Revealing a greener Amazon
Other scientists are also applying this combination of ground- and space-based data to verify their observations of vegetation cycles around the globe. Alfredo Huete, at the University of Arizona, used a similar combination to study vegetation in the Amazonian rainforest in South America. Huete said, “Rain forests worldwide play a large role in global energy budgets because of their ability to store carbon dioxide, a greenhouse gas.” Like the erosive farm practices on the Great Plains during the early 1900s, human land-use activities, such as clear-cutting and burning of forests, are shrinking the size of many of the world’s rain forests and affecting their ability to store carbon. More accurately characterizing rain forest vegetation may help climate modelers understand how much carbon the forests are absorbing, and allow them to better investigate the forest’s roles in mitigating climate change.
First, however, Huete and his colleagues needed to solve a problem. Traditional remotely sensed NDVI measurements can reach a point of saturation, beyond which they underestimate the vegetation cover, particularly in densely forested areas like the Amazon. To overcome this limitation, Huete calculated an Enhanced Vegetation Index (EVI) from MODIS land-cover data, which is available from NASA's Land Processes DAAC (LP DAAC). The EVI calculations corrected the saturation problem and provided the full canopy conditions in the Amazon.
Instead of going dormant during the dry season, Huete discovered that vegetation in the Amazon responded to the increased amount of sunlight and became 25 percent more green and productive. His finding defied the long-held belief that the Amazon rain forests either decrease in productivity during the dry season, or remain the same year-round. Traditional NDVI and LAI measurements were not sensitive enough to see seasonal changes in the Amazon rain forest canopy, causing scientists to mischaracterize the vegetation cycle for the entire region. Huete said, “Dozens of papers were based on rain forest cycles being flat, with no seasonality, or assumed that rain forest vegetation would green up primarily in response to rainfall.” Huete’s finding meant that rain forests were very seasonal and that sunlight during the dry season was the main driver.
To verify their findings, the researchers used data from flux towers stationed throughout the Amazon. “The flux towers may be the only in situ data source that has continuous time series,” Huete said. “We were seeing a pattern that was not seen before in the NDVI data. No one would have accepted the satellite data results if it were not for the independent flux tower data,” Huete said. Comparing the two data sources provided confidence that the MODIS EVI data successfully recorded more accurate vegetation conditions.
Future focus
Huete’s findings may help scientists better understand the carbon budgets of tropical forests. He is also curious about other rain forests, particularly in Southeast Asia where human activity has had a much larger impact. He is planning to use MODIS EVI calculations to observe how the resulting vegetation is regenerating, and if it is beginning to respond to sunlight during the dry season. “With EVI, we have this enhanced sensitivity, so now we’re looking to see what we missed before,” Huete said. Understanding the energy cycles of new-growth forests will help scientists understand how much atmospheric carbon new growth is absorbing. Wilson plans to continue studying the eleven selected sites in the United States and comparing them to MODIS data to fully characterize the vegetation at each site. Wilson said, “Our goal is to provide people with additional information about our sites when we give them our flux tower data.” By giving users more detailed information about the vegetation conditions present when tower measurements were made, Wilson’s study provides data that may improve the accuracy of climate vegetation models.
MODIS data, combined with flux tower data, are giving scientists and modelers instant access to information about Earth’s various ecosystems, whether they are rain forests half a world away or croplands next door. And this developing time series of flux records will help scientists understand ecosystem health and provide insight into how Earth’s vegetation is faring. “People use these data in climate models so they can see what the vegetation is doing now and understand what the vegetation might do under future conditions,” Wilson said. “That’s why this information is critical.”
References
Huete, A. R., K. Didan, Y. E. Shimabakuro, P. Ratana, S. R. Saleska, L. R. Hutyra, W. Yang, R. R. Nemani, and R. Myneni. 2006. Amazon rainforest green-up with sunlight in dry season. Geophysical Research Letters 33, L06405, doi:10.1029/2005GL025583.
Wilson, T. B., and T. P. Meyers. 2007. Determining vegetation indices from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology 144(3–4): 160–179.
For more information
NASA Land Processes Distributed Active Archive Center (LP DAAC)
NASA Oak Ridge National Laboratory (ORNL DAAC)
Moderate Resolution Imaging Spectroradiometer (MODIS)
FLUXNET
About the data |
Satellites |
Terra and Aqua |
|
Terra and Aqua |
Sensors |
Moderate Resolution Imaging Spectroradiometer (MODIS) |
Flux towers, Radiometer
Three-Dimensional Sonic Anemometer
Thermometer (SAT)
Fast-response infrared gas analyzer
|
MODIS |
Data sets |
MODIS ASCII Subsets |
LAI
NDVI |
MODIS Land Products |
Resolution |
7 by 7 kilometers |
|
1,200 by 1,200 kilometers |
Parameters |
Vegetation Indices
Leaf Area Index (LAI)
Normalized Difference Vegetation Index (NDVI) |
Vegetation indices
LAI
NDVI |
Vegetation indices
LAI
Enhanced Vegetation Index (EVI) |
DAACs |
NASA Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) |
NASA ORNL DAAC |
NASA Land Processes DAAC (LP DAAC) |