Global Studies
Global lightning signatures from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) have been analyzed from the filmstrip imagery which is archived at the National Snow and Ice Data Center in Boulder, Colorado. These signatures show up as horizontal streaks on the film images. The location of each of these streaks has been digitized in order to develop a preliminary database of global lightning activity.
While the database continues to be enlarged, the available data are spotty, making a comprehensive history of global lightning behavior impossible to produce. However, direct digital OLS data are becoming available now which will greatly improve and expand the global lightning database which is an important reference dataset.
Lightning annual, interannual , and seasonal variations could then be compared with other global datasets (e.g. precipitation; global and regional synoptic patterns) both to improve understanding of the role of lightning on a global basis and to use lightning as an indicator of global change.
The Global Electric Circuit
During fair weather, a potential difference of 200,000 to 500,000 Volts exists between the Earth's surface and the ionosphere, with a fair weather current of about 2x10-12 amperes/meter2. It is widely believed that this potential difference is due to the world-wide distribution of thunderstorms.
Present measurements indicate that an average of almost 1 ampere of current flows into the stratosphere during the active phase of a typical thunderstorm. Therefore, to maintain the fair weather global electric current flowing to the surface, one to two thousand thunderstorms must be active at any given time. While present theory suggests that thunderstorms are responsible for the ionospheric potential and atmospheric current for fair weather, the details are not fully understood.
Ground-based radio frequency measurements of global rates have significant uncertainties and limitations. A high resolution space based sensor is necessary in order to help eliminate some of the present uncertainties associated with measuring global lightning activity.
The Optical Transient Detector (OTD)
The OTD is a highly compact combination of optical and electronic elements. It was developed as an in-house project at NASA's Marshall Space Flight Center in Huntsville, Alabama. The name, Optical Transient Detector, refers to its capability to detect the momentary changes in an optical scene which indicates the occurrence of lightning. The OTD instrument is a major advance over previous technology in that it can gather lightning data under daytime conditions as well as at night. In addition, it provides much higher detection efficiency and spatial resolution than has been attained by earlier lightning sensors.
At the heart of the system is a solid-state optical sensor similar in some ways to a TV camera. However, in overall design and many specific features, OTD had to be uniquely designed for the job of observing and measuring lightning from space. Like a TV camera, the OTD has a lens system, a detector array (serving a function somewhat analogous to the retina in the human eye), and circuitry to convert the electronic output of the system's detector array into useful data.
Tropical Rainfall Measuring Mission (TRMM)
Rainfall is at the heart of Earth's unique ability to sustain life as we know it. Vegetable, animal, and human life is controlled to a large degree by the availability of moisture. On the global scale, heat released by the condensation of water vapor is a principal cause of motion in the atmosphere. Tropical rainfall, due to its abundance, plays a significant role in this process.
The measurement of rainfall is a difficult challenge due to its high spatial and temporal variability. Tropical rainfall is especially difficult as it is relatively inaccessible to in situ measurements.
Launched in November, 1997, TRMM is a space based system for measuring tropical rainfall and its variations. Its orbit is circular, at an inclination of 35 degrees to the equator, and at an altitude of 350 km. The low altitude of TRMM provides high resolution images, thus, more accurate rainfall measurements are obtained over very small areas of the globe. Learn more by reading the TRMM Fact Sheet.
TRMM is an international collaboration with Japan, providing the first Precipitation Radar (PR) in space. The PR instrument provides information on 3-D rainfall distributions over both land and ocean.
A multichannel microwave radiometer, referred to as the TRMM Microwave Imager (TMI), provides information on precipitation content, and the real distribution and intensity of rainfall.
The Visible InfraRed Scanner (VIRS) provides high resolution information on cloud coverage and type, and cloud top temperatures.
The Clouds and the Earth's Radiant Energy System (CERES) is a visible and infrared sensor designed especially to measure emitted and reflected radiative energy from the Earth, and from the atmosphere and its constituents.
The Lightning Imaging Sensor (LIS) is investigating the global incidence of lightning and the relationship of lightning to precipitation and other geophysical parameters.