But the results are preliminary, and further comparisons need to be done. "You need to constantly calibrate what you see on the ground with what you see from space," said Crown. "It's a learning process - some things we see on the surface are expected, and others are a big surprise." Crown cited the example of the Martian "blueberries" photographed by the Mars rover Opportunity in December 2004. Blueberries are marble-sized pebbles that contain hematite, a mineral that supports the idea that water existed in Mars' past. "Nobody knew what that was going to look like," he said, "and every bit of new information can change things dramatically."
Understanding how to use satellite data to map subtle differences around a crater on Earth will give scientists a better handle on how to do it on Mars. But finding impact craters to study on Earth is like a complicated treasure hunt. Erosional processes and plate tectonics effectively erase impact craters from view. "If you look at the Earth's surface, your first impression would be that there are no impact craters on Earth. In reality, there are lots of older impact craters here, but they've been weathered away," said Ramsey.
While only about 120 impact craters have been identified on Earth, scientists estimate that on the surface of Mars, there are more than 43,000 impact craters with diameters greater than 5 kilometers (3 miles), and probably over a quarter of a million impact craters that are similar in size to Meteor Crater. Scientists believe that most craters on Mars were formed by meteorite impact early in Mars' history, but some may be from more recent impacts.
"Things on Mars stay around a lot longer than on Earth. You don't have plate tectonics erasing things as they go down a subduction zone," said Ramsey. "So our intent is to do the best we can making comparisons with these two craters, come up with some classifications, and then go to work on the THEMIS data from Mars."
Learning about small-scale processes on Mars can also provide valuable clues into the planet's climate history. "I don't think there's any question that there's water and ice near the Martian surface," said Crown. "The question is, 'what does this say about the climate history of the planet?' Does the existence of water on Mars in its earlier history mean that there was an atmosphere and a warmer planet? Or does it mean that there is just water locked up in the surface that sometimes gets released from the interior?" Answers to questions such as these could reveal information about Earth's future climate.
"It's all part of the big question: Why study the planets?" said Crown. "Trying to understand the history of other planets helps us compare them to the Earth and learn about patterns and geologic evolution on a planetary scale."
For now, the researchers continue to focus on one very small piece of the planetary geology puzzle: learning how to recognize different types of craters using satellite data. "We can't walk around to every crater on Mars and examine the material around the rims," said Ramsey. "Right now, we have to look at these features from space."
References
McGeary, D. and C.C. Plummer. 1992. Physical Geology, Earth Revealed . Wm. C. Brown Publishers.
Peet, V.M., M.S. Ramsey, and D.A. Crown. 2005. Comparison of terrestrial morphology, ejecta, and sediment transport of small craters: volcanic and impact analogs to Mars. Lunar Planet. Sci. Conf. #XXXVI , abs. #2080 (CD-ROM), 2005.
For more information
NASA Land Processes Distributed Active Archive Center (LP DAAC)
Image Visualization and Infrared Spectroscopy (IVIS) Laboratory
NASA's Mars Exploration Program
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Thermal Emission Imaging System (THEMIS)
About the remote sensing data used |
Satellite |
Terra |
Thermal Emission Imaging System (THEMIS) |
Sensor |
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) |
Electric Field Instruments (EFIs) |
Parameter |
geography of Martian craters |
geography of Martian craters |
DAAC |
NASA Land Processes Distributed Active Archive Center (LP DAAC) |
NASA LP DAAC |