Skip to main content

Below is a list of fire attribute fields for near real-time (NRT) active fire data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Learn more about MODIS NRT data, VIIRS-Atmosphere NRT data, and VIIRS-Land NRT data.

NRT active fire data is distributed by NASA's Fire Information for Resource Management System (FIRMS).

Attribute Fields for NRT MODIS Active Fire Data

AttributeShort DescriptionLong Description
LatitudeLatitudeCenter of 1 km fire pixel, but not necessarily the actual location of the fire as one or more fires can be detected within the 1 km pixel.
LongitudeLongitudeCenter of 1 km fire pixel, but not necessarily the actual location of the fire as one or more fires can be detected within the 1 km pixel.

Brightness

 

Brightness temperature 21 (Kelvin)Channel 21/22 brightness temperature of the fire pixel measured in Kelvin.
ScanAlong Scan pixel sizeThe algorithm produces 1 km fire pixels, but MODIS pixels get bigger toward the edge of scan. Scan and track reflect actual pixel size.
TrackAlong Track pixel sizeThe algorithm produces 1 km fire pixels, but MODIS pixels get bigger toward the edge of scan. Scan and track reflect actual pixel size.
Acq_DateAcquisition DateData of MODIS acquisition.
Acq_TimeAcquisition TimeTime of acquisition/overpass of the satellite (in UTC).
SatelliteSatelliteA = Aqua and T = Terra.
ConfidenceConfidence (0-100%)This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence estimates range between 0 and 100% and are assigned one of the three fire classes (low-confidence fire, nominal-confidence fire, or high-confidence fire).
VersionVersion (Collection and source)

Version identifies the collection (e.g., MODIS Collection 6.1) and source of data processing (Ultra Real-Time (URT suffix added to collection), Real-Time (RT suffix), Near Real-Time (NRT suffix) or Standard Processing (collection only). For example:

"6.1URT" - Collection 6.1 Ultra Real-Time processing.
"6.1RT" -  Collection 6.1 Real-Time processing.
"6.1NRT" - Collection 61 Near Real-Time processing.
"6.1" - Collection 61 Standard processing.
Find out more on collections and on the differences between FIRMS data sourced from LANCE FIRMS and the University of Maryland in the FIRMS FAQ.

Bright_T31 Brightness temperature 31 (Kelvin)Channel 31 brightness temperature of the fire pixel measured in Kelvin.
FRPFire Radiative Power (MW - megawatts)Depicts the pixel-integrated fire radiative power in MW (megawatts).
Type*Inferred hot spot type0 = presumed vegetation fire
1 = active volcano
2 = other static land source
3 = offshore
DayNightDay or NightD= Daytime fire, N= Nighttime fire

*This attribute is only available for MCD14ML (standard quality) data

 

 

Attribute Fields for NRT VIIRS 375m Active Fire Data

AttributeShort DescriptionLong Description
LatitudeLatitudeCenter of nominal 375 m fire pixel
LongitudeLongitudeCenter of nominal 375 m fire pixel
Bright_ti4 /
Brightness (in web services)
Brightness temperature I-4VIIRS I-4 channel brightness temperature of the fire pixel measured in Kelvin
ScanAlong Scan pixel sizeThe algorithm produces approximately 375 m pixels at nadir. Scan and track reflect actual pixel size
TrackAlong Track pixel sizeThe algorithm produces approximately 375 m pixels at nadir. Scan and track reflect actual pixel size
Acq_DateAcquisition DateDate of VIIRS acquisition
Acq_TimeAcquisition TimeTime of acquisition/overpass of the satellite (in UTC)
SatelliteSatelliteN= Suomi National Polar-orbiting Partnership (Suomi NPP), N20=NOAA-20 (designated JPSS-1 prior to launch), N21=NOAA-21 (designated JPSS-2 prior to launch)
ConfidenceConfidence

This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.

Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.

VersionVersion (Collection and source)Version identifies the collection (e.g. VIIRS Collection 1) and source of data processing: Near Real-Time (NRT suffix added to collection) or Standard Processing (collection only)
"1.0NRT" - Collection 1 NRT processing
"1.0" - Collection 1 Standard processing
Bright_ti5 /
Brightness_2 (in web services)
Brightness temperature I-5I-5 Channel brightness temperature of the fire pixel measured in Kelvin
FRPFire Radiative PowerFRP depicts the pixel-integrated fire radiative power in MW (megawatts). FRP depicts the pixel-integrated fire radiative power in MW (megawatts). Given the unique spatial and spectral resolution of the data, the VIIRS 375 m fire detection algorithm was customized and tuned in order to optimize its response over small fires while balancing the occurrence of false alarms. Frequent saturation of the mid-infrared I4 channel (3.55-3.93 µm) driving the detection of active fires requires additional tests and procedures to avoid pixel classification errors. As a result, sub-pixel fire characterization (e.g., fire radiative power [FRP] retrieval) is only viable across small and/or low-intensity fires. Systematic FRP retrievals are based on a hybrid approach combining 375 and 750 m data. In fact, starting in 2015 the algorithm incorporated additional VIIRS channel M13 (3.973-4.128 µm) 750 m data in both aggregated and unaggregated format.
DayNightDay or NightD= Daytime fire, N= Nighttime fire