Skip to main content

Read how scientists are using commercial Earth science small satellite (SmallSat) data. If you are a NASA-funded researcher and have published a paper using commercial datasets associated with the Commercial SmallSat Data Acquisition (CSDA) program, please send it to CSDA to have it posted.

Maxar

Publications using Maxar SmallSat data.

TitlePrimary authorYear
A landscape evolution modeling approach for predicting three-dimensional soil organic carbon redistribution in agricultural landscapes. JGR Biogeosciences, 127(2). doi:10.1029/2021JG006616Kwang, J.S.2022
Quantifying mass flows at Mt. Cleveland, Alaska between 2001 and 2020 using satellite photogrammetry. Journal of Volcanology and Geothermal Research, 429. doi:10.1016/j.jvolgeores.2022.107614Dai, C.2022
Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sensing 13(5). doi:10.3390/rs13050872Skakun, S.2021
The extent of soil loss across the US Corn Belt. Proceedings of the National Academy of Sciences of the United States of America. 118(8). doi:10.1073/pnas.1922375118Thaler, E.2021
Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas. Data Science and Engineering, 5. doi:10.1007/s41019-020-00126-0Islam, K.A.2020
An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587. doi:10.1038/s41586-020-2824-5Brandt, M.2020
Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sensing of Environment, 25. doi:10.1016/j.rse.2020.112036Coffer, M.2020
Storm surge, not wind, caused mangrove dieback in southwest Florida following Hurricane Irma. EarthArxiv (preprint). doi:10.31223/osf.io/q4exhLagomasino, D.2020
Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sensing of Environment, Vol 237, ISSN 0034-4257. doi:10.1016/j.rse.2019.111543Lucas, R2020
The bioclimatic extent and pattern of the cold edge of the boreal forest: the circumpolar taiga-tundra ecotone. Environmental Research Letters, 15(10). doi:10.1088/1748-9326/abb2c7Montesano, P.2020
In search of floating algae and other organisms in global oceans and lakes. Remote Sensing of Environment, 239. doi:10.1016/j.rse.2020.111659Qi, L.2020
Resolvable estuaries for satellite derived water quality within the continental United States. Remote Sensing Letters, 11(6): 535-544. doi:10.1080/2150704X.2020.1717013Schaeffer, B.2020
Fusion Approach for Remotely-Sensed Mapping of Agriculture (FARMA): A Scalable Open Source Method for Land Cover Monitoring Using Data Fusion. Remote Sensing 12(2). doi:10.3390/rs12203459Thomas, N.2020
Remote Sensing of Coconut Trees in Tonga Using Very High Spatial Resolution WorldView-3 Data. Remote Sensing, 12(19). doi:10.3390/rs12193113Vermote, E2020
Use of Very High-Resolution Optical Data for Landslide Mapping and Susceptibility Analysis along the Karnali Highway, Nepal. Remote Sensing 11(19). doi:10.3390/rs11192284Amatya, P.2019
The effects of trainings in soil and water conservation on farming practices, livelihoods, and land-use intensity in the Ethiopian highlands. Land Use Policy. Volume 87, September 2019, 104051. doi: 10.1016/j.landusepol.2019.104051Chesterman, N.S.2019
Characterizing multi-decadal, annual land cover change dynamics in Houston, TX based on automated classification of Landsat imagery. doi:10.1080/01431161.2018.1516318Hakkenberg, C.R.2019
Spatiotemporal changes of informal settlements: Ger districts in Ulaanbaatar, Mongolia. Landscape and Urban Planning, Volume 191, 103630, ISSN 0169-2046, doi: 10.1016/j.landurbplan.2019.103630Hogeun, P.2019
Basaltic terrains in Idaho and Hawai 'i as planetary analogs for Mars geology and astrobiology. Astrobiology 19(3). doi:10.1089/ast.2018.1847Hughes, S.2019
The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia. Frontiers in Earth Science 7(197). doi:10.3389/feart.2019.00197Kirschbaum, C.2019
Boreal canopy surfaces from spaceborne stereogrammetry. Remote Sensing of Environment, Volume 225, Pages 148-159, ISSN 0034-4257. doi: 10.1016/j.rse.2019.02.012Montesano, P.2019
Improved assessment of mangrove forests in Sundarbans East Wildlife Sanctuary using WorldView 2 and TanDEM?X high resolution imagery. Remote Sensing in Ecology and Conservation, 5: 136-149. doi:10.1002/rse2.105Rahmen, M.M.2019
A Study of African Savanna Vegetation Structure, Patterning, and Change. Electronic Theses and Dissertations.Axelsson, C.2018
Rates of woody encroachment in African savannas reflect water constraints and fire disturbance. J Biogeography, 2018;00:1–10. doi: 10.1111/jbi.13221Axelsson, C.2018
Contributions of landscape heterogeneity within the footprint of eddy-covariance towers to flux measurements. Agricultural and Forest Meteorology, Volumes 260–261, 15 October 2018, Pages 144-153, ISSN 0168-1923. doi: 10.1016/j.agrformet.2018.06.004Giannico, V.2018
Urban Transformation in Transitional Economies: Lessons From the Mongolian Plateau. Michigan State University, ProQuest Dissertations Publishing.Hogeun, P.2018
Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques. Remote Sensing of Environment, Volume 210, 1 June 2018, Pages 282-296, ISSN 0034-4257. doi: 10.1016/j.rse.2018.03.019Meng, R.2018
Forest Cover Dynamics of Shifting Cultivation in the Democratic Republic of Congo. University of Maryland, Digital Repository at the University of Maryland, Dissertation. doi:10.13016/iazo-hngvMolinario, G2018
Characterizing agricultural drought in the Karamoja subregion of Uganda with meteorological and satellite-based indices. Natural Hazards. doi: 10.1007/s11069-017-3106-xNakalembe, C.2018
Smallholder crop area mapped with wall-to-wall WorldView sub-meter panchromatic image texture: A test case for Tigray, Ethiopia. Remote Sensing of Environment, Volume 212, 2018, 8-20. doi:10.1016/j.rse.2018.04.025Neigh, C.2018
Anticipating social equity impacts in REDD+ policy design: An example from the Democratic Republic of Congo. Land Use Policy, Volume 75, June 2018, 102-115, ISSN 0264-8377. doi: 10.1016/j.landusepol.2018.03.011Pelletier, J.2018
Changes in tall shrub abundance on the North Slope of Alaska, 2000–2010. Remote Sensing of Environment, Volume 219, 221-232. doi: 10.1016/j.rse.2018.10.009Rocio, R.2018
Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sensing of Environment, 210, 259-268. doi:10.1016/j.rse.2018.03.023Toure, S.I.2018
Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. New Phytologist, 217(4), 1507-1520. doi:10.1111/nph.14939Wu, J.2018
Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing, 2017, 9(5), 497. doi: 10.3390/rs9050497Carroll, M.L.2017
An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery. Remote Sensing, 9(6), 566. doi:10.3390/rs9060566Jain, M.2017
Remote sensing evidence of lava–ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska. Bulletin of Volcanology 79. doi:10.1007/s00445-017-1176-yMarcucci, E.C.2017
Extracting smallholder cropped area in Tigray, Ethiopia with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. doi:10.1016/j.rse.2017.06.040McCarty, J.L.2017
Quantification of land cover and land use within the rural complex of the Democratic Republic of Congo. Environmental Research Letters, Volume 12, Number 10. doi:10.1088/1748-9326/aa8680Molinario, G2017
The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sensing of Environment, 196, 76-88. doi:10.1016/j.rse.2017.04.024Montesano, P.2017
Agricultural land use change in Karamoja Region, Uganda. Land Use Policy, Volume 62, March 2017, 2–12. doi:10.1016/j.landusepol.2016.11.029Nakalembe, C.2017
Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sensing of Environment, Volume 191, 15 March 2017, 95–109. doi:10.1016/j.rse.2017.01.016Neigh, C.2017
Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. Forest Ecology and Management, Volume 384, 15 January 2017, 191-199. doi:10.1016/j.foreco.2016.10.050Ranson, K.J.2017
Three decades of Landsat-derived spring surface water dynamics in an agricultural wetland mosaic; Implications for migratory shorebirds. Remote Sensing of Environment, Volume 193, May 2017, 180-192. doi:10.1016/j.rse.2017.02.016Schaffer-Smith, D.2017
Historic drought puts the brakes on earthflows in Northern California. Geophysical Research Letters, 43, 5725–5731. doi: 10.1002/2016GL068378Benneett, G.L.2016
Vegetation Disturbance and Recovery Following a Rare Windthrow Event in the Great Smoky Mountains National Park. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 XXIII SPRS Congress, 12–19 July 2016, Prague, Czech Republic. doi:10.5194/isprs-archives-XLI-B8-571-2016Bernardes, S.2016
Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery Remote Sensing of Environment, Volume 184, October 2016, 396–409. doi:10.1016/j.rse.2016.07.016Coulter, L.L.2016
Disturbance analyses of forests and grasslands with MODIS and Landsat in New Zealand. International Journal of Applied Earth Observation and Geoinformation, Volume 45, Part A, March 2016, 42–54. doi:10.1016/j.jag.2015.10.009de Beurs, K.M.2016
Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 2016, 185, 142-154. doi: 10.1016/j.rse.2016.02.016Dong, J.2016
Landscape-Level Associations of Wintering Waterbird Diversity and Abundance from Remotely Sensed Wetland Characteristics of Poyang Lake. Remote Sensing, 2016, 8(6), 462. doi: 10.3390/rs8060462Dronova, I2016
Capability of the CANAPI algorithm to derive shrub structural parameters from satellite imagery in the Alaskan Arctic. Polar Record, 52(2), 124-133. doi: 10.1017/S0032247415000509Duchesne, R.2016
Climate-induced landsliding within the larch dominant permafrost zone of central Siberia. Environmental Research Letters, Volume 11, Number 4. doi:10.1016/j.rse.2017.01.016Kharuk, V.I.2016
A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space. Remote Sensing, 2016, 8(4), 327. doi: 10.3390/rs8040327Lagomasino, D.2016
Monitoring orbital precession of EO-1 Hyperion with three atmospheric correction models in the Libya-4 PICS. IEEE Geoscience and Remote Sensing Letters, Vol. 13, NO. 12, Dec 2016. doi:10.1109/LGRS.2016.2612539Neigh, C.2016
Regional rates of young US forest growth estimated from annual Landsat disturbance history and IKONOS stereo imagery. Remote Sensing of Environment, 173, 282-293. doi: 10.1016/j.rse.2015.09.007Neigh, C.2016
The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. Bioscience, 65, 893-905. doi:10.1093/biosci/biv106Balch, J.K.2015
Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, Volume 160, April 2015, 99–113. doi:10.1016/j.rse.2015.01.004Dong, J.2015
Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment, 158, 193–206. doi:10.1016/j.rse.2014.10.027Dronova, I2015
Changes in tall shrub abundance on the North Slope of Alaska, 2000-2010. Montclair State University, ProQuest Dissertations Publishing, 2015.Duchesne, O.2015
Mapping Slums Using Spatial Features in Accra, Ghana. Joint Urban Remote Sensing Event (JURSE), March 30, 2015-April 1, 2015.Engstrom, R.2015
High-resolution forest canopy height estimation in an Africa blue carbon ecosystem. Remote Sensing in Ecology and Conservation. doi:10.1002/rse2.3Lagomasino, D.2015
Does the spatial arrangement of urban landscape matter? Examples of urban warming and cooling in Phoenix and Las Vegas. Ecosystem Health and Sustainability, 1, 1-15. doi: 10.1890/EHS14-0028.1Myint, S.W.2015
Characterizing Forest Disturbance Dynamics in the Humid Tropics Using Optical and Lidar Remotely Sensed Data Sets. University of Maryland, Digital Repository at the University of Maryland, Dissertation. doi: 10.13016/M2W615Tyukavina, A.2015
Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images. Scientific Reports volume 5, Article number: 10088.Wang, J.I.2015
A contemporary decennial examination of changing agricultural field sizes using Landsat time series data. Geography and Environment, 2: 33–54. doi: 10.1002/geo2.4White, E.V.2015
Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology, 20:1264-1277. doi.org:10.1111/gcb.12406Frost, G.V.2014
Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environmental Research Letters, 9:025004. doi.org:10.1088/1748-9326/9/2/025004Frost, G.V.2014
The role of environmental, socioeconomic, institutional, and land-cover/ land-use change factors to explain the pattern and drivers of anthropogenic fires in post-Soviet Eastern Europe: a case study comparison of Belarus, European Russia, and Lithuania. NASA LCLUC Science Team Meeting.McCarty, J.L.2014
The Uncertainty of Plot-Scale Forest Height Estimates from Complementary Spaceborne Observations in the Taiga-Tundra Ecotone. Remote Sensing, 6, 10070-10088. doi:10.3390/rs61010070Montesano, P.2014
Deciphering the precision of stereo IKONOS canopy height models for U.S. forests with G-LiHT airborne LiDAR. Remote Sensing, 6 1762-1782. doi:10.3390/rs6031762Neigh, C.2014
Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters, 8:015035. doi:10.1088/1748-9326/8/1/015035Frost, G.V.2013
Mapping cropping intensity of smallholder farms – a comparison of methods using multiple sensors. Remote Sensing of Environment, 134: 210-223. doi:10.1016/j.rse.2013.02.029Jain, M.2013
National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic Republic of the Congo. Environmental Research Letters, 8:04403.Tyukavina, A.2013
Planet

Publications using Planet SmallSat data.

TitlePrimary authorYear
Mapping Flash Flood Hazards in Arid Regions using CubeSats. Remote Sensing, 14(17): 4218. doi:10.3390/rs14174218Wang, Z.2022
Detecting Streamflow in Dryland Rivers using CubeSats. Geophysical Research Letters, 49(15). doi:10.1029/2022GL098729Wang, Z.2022
Potential for commercial PlanetScope satellites in oil response monitoring. Marine Pollution Bulletin, 183. doi:10.1016/j.marpolbul.2022.114077Schaeffer, B.2022
Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery. ISPRS Journal of Photogrammetry and Remote Sensing 173. doi:10.1016/j.isprsjprs.2020.12.012Bhushan, S.2021
High-resolution CubeSat imagery and machine learning for detailed snow-covered area. Remote Sensing of Environment, 258. doi:10.1016/j.rse.2021.112399Cannistra, A2021
Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery. The Cryosphere Discuss. doi:10.5194/tc-2021-4Datta, RT2021
Surface heights and crevasse morphologies of surging and fast-moving glaciers from ICESat-2 laser altimeter data - Application of the density-dimension algorithm (DDA-ice) and evaluation using airborne altimeter and Planet SkySat data. Science of Remote Sensing, 3. doi:10.1016/j.srs.2020.100013Herzfeld, U.2021
Characterization of Planetscope-0 Planetscope-1 surface reflectance and normalized difference vegetation index continuity. Science of Remote Sensing, 3. doi:10.1016/j.srs.2021.100014Huang, H.2021
Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sensing 13(5). doi:10.3390/rs13050872Skakun, S.2021
Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sensing of Environment, 25. doi:10.1016/j.rse.2020.112036Coffer, M.2020
ICESat-2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica. Geophysical Research Letters, 48(8). doi:10.1029/2020GL090550Fricker, H.2020
Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa. International Journal of Applied Earth Observation and Geoinformation, 93. doi:10.1016/j.jag.2020.102218Mishra, V.2020
In search of floating algae and other organisms in global oceans and lakes. Remote Sensing of Environment, 239. doi:10.1016/j.rse.2020.111659Qi, L.2020
Resolvable estuaries for satellite derived water quality within the continental United States. Remote Sensing Letters, 11(6): 535-544. doi:10.1080/2150704X.2020.1717013Schaeffer, B.2020
Use of Very High-Resolution Optical Data for Landslide Mapping and Susceptibility Analysis along the Karnali Highway, Nepal. Remote Sensing 11(19). doi:10.3390/rs11192284Amatya, P.2019
The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia. Frontiers in Earth Science 7(197). doi:10.3389/feart.2019.00197Kirschbaum, C.2019
Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach. Remote Sensing of Environment, 231(15). doi:10.1016/j.rse.2019.111254Roy, D.2019
Maxar and Planet

Publications using both Maxar and Planet SmallSat data.

TitlePrimary authorYear
Satellite remote sensing of pelagic Sargassum macroalgae: The power of high resolution and deep learning. Remote Sensing of Environment, 264. doi:10.1016/j.rse.2021.112631Wang, M.2021
Satellite Remote Sensing of Herring (Clupea pallasii) Spawning Events: A Case Study in the Strait of Georgia. Geophysical Research Letters, 48(7). doi:10.1029/2020GL092126Qi, L.2021
Assessing within-Field Corn and Soybean Yield Variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sensing 13(5). doi:10.3390/rs13050872Skakun, S.2021
Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sensing of Environment, 25. doi.org/10.1016/j.rse.2020.112036Coffer, M.2020
In search of floating algae and other organisms in global oceans and lakes. Remote Sensing of Environment, 239. doi:10.1016/j.rse.2020.111659Qi, L.2020
Resolvable estuaries for satellite derived water quality within the continental United States. Remote Sensing Letters, 11(6): 535-544. doi:10.1080/2150704X.2020.1717013Schaeffer, B.2020
Use of Very High-Resolution Optical Data for Landslide Mapping and Susceptibility Analysis along the Karnali Highway, Nepal. Remote Sensing 11(19). doi:10.3390/rs11192284Amatya, P.2019
The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia. Frontiers in Earth Science 7(197). doi:10.3389/feart.2019.00197Kirschbaum, C.2019
Spire

Publications using Spire SmallSat data.

TitlePrimary authorYear
Coherent GNSS-Reflections Characterization Over Ocean and Sea Ice Based on Spire Global CubeSat Data. IEEE Transactions on Geoscience and Remote Sensing (early access). doi:10.1109/TGRS.2021.3129999Roesler, C.2021
Coherent GNSS Reflection Signal Processing for High-Precision and High-Resolution Spaceborne Applications. IEEE Transactions on Geoscience and Remote Sensing, 59(1). doi:10.1109/TGRS.2020.2993804Wang, Y.2021