Water is the most abundant substance on Earth and a critical component of the water, carbon, and energy cycles that drive our planet. According to the USGS, water covers more than 70 percent of Earth, with an estimated total volume of 1.386 billion km3 (about 333 million miles3). While this is a lot of water, almost 97 percent of it is in the oceans and has high concentrations of salt. The non-saline freshwater we need to survive makes up only about 3 percent of water on Earth.
While this still is a lot of water, almost 70 percent of this freshwater is locked up in glaciers and icebergs. This leaves only about 30 percent of the freshwater as water that we easily can use. As a result, it is vital to know how much of this limited resource is available at a given time, in a given place, and in a given state (frozen, liquid, or water vapor).
Soil moisture makes up only about 0.05 percent of freshwater, but it plays a key role in weather and climate, runoff potential and flood control, soil erosion and slope failure, reservoir management, geotechnical engineering, and water quality. Being able to track the changes in soil moisture and the state in which it exists allows for better responses to natural hazards like droughts and floods as well as more effective management of agricultural production.
The public release of data products from NASA’s Soil Moisture Active Passive (SMAP) mission provides a valuable new resource for global measurements and assessments of water in the soil and the state in which this water exists. Over SMAP’s planned three-year primary mission, this global insight into the changes in soil moisture and freeze/thaw states will contribute to a greater understanding of how water drives our planet and affects our society.
Turning raw data collected by instruments on a spacecraft orbiting 685 km (about 426 miles) above Earth into more than a dozen data products and getting these products to users through NASA’s Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC) and National Snow and Ice Data Center DAAC (NSIDC DAAC) is a complex undertaking. For the SMAP team, the release of public soil moisture and freeze/thaw data marks not only the end of more than a half-decade of work, but the start of a challenging period of making sure these data and data products are delivered on time and provide the quality expected by data users around the world.