HoneyBeeNet
Esaias has organized a network of backyard beekeepers, called HoneyBeeNet, now numbering more than eighty volunteers all over the country. Most reside in the mid-Atlantic region where he began his work. But he is rapidly getting more volunteers from different states. “HoneyBeeNet is a network of citizen scientist beekeepers who volunteer to get a scale, measure their beehives’ weights daily, and send us the scale hive data,” he said. Some volunteers start out not quite knowing what to make of the satellite data, but are pleased to see it alongside the data they collected from their beehives. “Others are keen on seeing how their backyard changes from year to year as seen through satellite eyes,” he said. Esaias considers the scale hive data from volunteers as valuable records of the interaction between plants and pollinators, and how effective bees are in collecting nectar. “That’s very hard data to come by,” he said. “Satellite sensors can’t necessarily see the plants blooming. They can only see foliage turning green. That’s why the scale hive data is so valuable in validating what the satellites see,” he said.
Esaias is using the scale hive data to validate vegetation data subsets from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on NASA’s Terra and Aqua satellites, available from NASA's Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). Like the AVHRR sensor, MODIS also measures and maps the density of the Earth’s green vegetation, but at a higher spatial resolution, which means MODIS can provide images over a given pixel of land in finer detail. “The subset data that we get from ORNL is 6.5 by 6.5 kilometers [4 by 4 miles], which means each hive is 3.25 kilometers [2 miles] away from the edge. Bees are sampling that whole area, which makes it nice for comparing with the satellite data. The bees would have already done an integration of the important nectar and vegetation sources as far as they’re concerned. They’ve already done a lot of the work for us,” Esaias said.
The research project, which has evolved from Esaias’ hobby to a NASA-funded study, could help scientists and apiarists understand how plant and pollinator relationships are changing and might change in the future. Data from the volunteers will also be preserved for climate change and land cover change research. “I was a little nervous when I proposed the study to NASA because this was my hobby, you know,” he said. “But there was a real signal in the scale hive data, and I thought it was important. Pollinators are important. It’s crucial for us to understand if our pollination system and plants are going to get messed up or how will they change in response to climate change. I’m not so worried about them getting messed up, but how will they change and what measures can we take as beekeepers and food producers to minimize the impact of any changes that occur.
References
Inouye, D.W. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89(2): 353-362, doi:10.1890/06-2128.1.
Inouye, D.W. 2007. Impacts of global warming on pollinators. Wings 30(2): 24-27.
Nightingale, J.M., W.E. Esaias, R. E. Wolfe, J.E. Nickeson, and P.L.A. Ma. 2008. Assessing honey bee equilibrium range and forage supply using satellite-derived phenology. In Proceedings of the Geoscience and Remote Sensing Symposium of the IEEE Geoscience and Remote Sensing Society, 3, III-763 - III-766, doi:10.1109/IGARSS.2008.4779460.
U.S. Congress. House Subcommittee on Horticulture and Organic Agriculture, Committee on Agriculture. Colony Collapse Disorder and Pollinator Decline. 110th Cong., 1st sess., March 29, 2007.
vanEngelsdorp, D., J. Hayes Jr., R. M. Underwood, and J. Pettis. 2008. A survey of honey bee colony losses in the U.S., Fall 2007 to Spring 2008. PLoS ONE 3(12): e4071, doi:10.1371/journal.pone.0004071.
Zhang, X., D. Tarpley, and J. T. Sullivan. 2007. Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters 34, L19405, doi:10.1029/2007GL031447.
For more information
NASA Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC)
Moderate Resolution Imaging Spectroradiometer (MODIS) Land Products Subsets
HoneyBeeNet
About the remote sensing data |
Satellites |
Terra and Aqua |
Sensor |
Moderate Resolution Imaging Spectroradiometer (MODIS) |
Data sets |
MODIS Subsets; Vegetation Indices; Land Cover Dynamics; Land Cover Type |
Resolution |
250 meter and 500 meter |
Parameters |
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), land cover classification, phenology |
DAAC |
NASA Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) |
Standard MODIS land products are available from NASA's Land Processes DAAC (LP DAAC).