Researchers who assess air pollution and help determine bad air days are equally interested, because current computer models do not adequately account for nitrogen oxides produced by lightning. In addition, scientists do not know enough about Earth’s electrical environment to determine which type of lightning contributes more nitrogen oxides to the atmosphere: ground flashes or cloud flashes.
“If you have a better understanding of how many ground and cloud flashes you’re dealing with, and better information on lightning channel lengths, currents, and altitudes, then you can do a better job estimating the amount of nitrogen oxides from lightning, which in turn helps you better estimate ozone. It is a complex problem,” Koshak said.
Future needs
Scientists do not yet have all the tools needed to unravel this problem on a global basis. Most lightning networks, such as the NLDN, are data rich. However, these networks are ground-based, which limits them to specific areas. Lightning sensors on satellites can record lightning strikes around the world, but they lack the ability to discern between ground and cloud flashes. “When you’re viewing lightning from space, the cloud obscures your view,” Koshak said. So Koshak is developing an algorithm that will enable space-based sensors to estimate what fraction of lightning strikes the ground.
Koshak, Chronis, and other lightning researchers hope that future sensors will uncover some of the mysteries about lightning and Earth’s electrical environment. Currently, there is only one space-based lightning sensor and a few ground-based networks that observe lightning activity on a global scale. NASA and the National Oceanic and Atmospheric Administration are collaborating to launch a new Geostationary Operational Environmental Satellite-R series (GOES-R) mission, which will include a lightning mapping instrument. This sensor will continuously monitor lightning in the Western Hemisphere, helping to improve severe weather warnings and provide a better understanding of lightning nitrogen oxide production, crucial for improving regional air quality modeling.
Chronis’s research revealed that galactic cosmic rays influence the number of lightning strikes over the United States. He still ponders larger questions about lightning, such as what happens to the electrical quality of clouds, and the water and ice within, after lightning discharges. Chronis plans to take advantage of the global view of lightning that the new sensor will provide. He said, “We’ll have to wait for a few years to develop a time series, but we will have lightning observations every couple of milliseconds over an entire hemisphere.”
References
Chronis, T.G. 2009. Investigating possible links between incoming cosmic rays fluxes and lightning activity over the United States. Journal of Climate 22: 5,748-5,754, doi:10.1175/2009JCLI2912.1.
Koshak, W.J. 2010. Optical characteristics of OTD flashes and the implications for flash type discrimination. Journal of Atmospheric and Oceanic Technology, doi:10.1175/2010JTECHA1405.1.
For more information
NASA Global Hydrometeorology Resource Center Distributed Active Archive Center (GHRC DAAC)
National Lightning Detection Network
NASA Marshall Flight Space Center
Hellenic Center for Marine Research
About the data |
Network |
National Lightning Detection Network (NLDN), operated by Vaisala, Incorporated |
Sensor |
Vaisala IMPACT ESP Lightning Sensors |
Data sets |
GAI Lightning Ground Strikes and Vaisala U.S. NLDN Flash Data |
Resolution |
Continental United States |
Parameter |
Lightning |
DAAC |
NASA Global Hydrometeorology Resource Center Distributed Active Archive Center (GHRC DAAC) |