Visible Infrared Imaging Radiometer Suite (VIIRS)

Please note: Due to NASA regulations, FTP access switched to HTTPS in November 2018.

For scripted/automatic downloads please see instructions at https://nrt3.modaps.eosdis.nasa.gov/help/downloads

VIIRS Corrected Reflectance Imagery is produced in near real-time (NRT), providing continuity from the MODIS Corrected Reflectance imagery which was developed to provide natural looking images. Read more...

The data products are available on https://nrt3.modaps.eosdis.nasa.gov/archive/allData/5000/ and https://nrt4.modaps.eosdis.nasa.gov/allData/5000/

Other VIIRS products will follow over the next few months. More information will be posted on this page as it becomes available or sign up for the LANCE Users mailing list.

VIIRS / Suomi-NPP

Product
(HTTPS download link)
Description

Volume
(GB/day)
Browse
VNP01_NRT VIIRS/NPP Raw Radiances in Counts 6-Min L1A Swath - NRT
10.5067/VIIRS/VNP01_NRT.001
VNP02DNB_NRT VIIRS/NPP Day/Night Band 6-Min L1B Swath SDR 750m NRT
10.5067/VIIRS/VNP02DNB_NRT.001
L1B Day/Night Band Night Browse
VNP02MOD_NRT VIIRS/NPP Moderate Resolution Bands L1B 6-Min Swath 750m NRT
10.5067/VIIRS/VNP02MOD_NRT.001
L1B Moderate Browse
VNP02IMG_NRT VIIRS/NPP Imagery Resolution 6-Min L1B Swath SDR 375m NRT
10.5067/VIIRS/VNP02IMG_NRT.001
L1B Imagery Browse
VNP03DNB_NRT VIIRS/NPP Day/Night Band Terrain Corrected Geolocation L1 6-Min Swath 750m NRT
10.5067/VIIRS/VNP03DNB_NRT.001
VNP03MOD_NRT VIIRS/NPP Moderate Resolution Terrain-Corrected Geolocation L1 6-Min Swath 750m NRT
10.5067/VIIRS/VNP03MOD_NRT.001
VNP03IMG_NRT VIIRS/NPP Imagery Resolution Terrain-Corrected Geolocation L1 6-Min Swath 375m NRT
10.5067/VIIRS/VNP03IMG_NRT.001
VNP09_NRT VIIRS Land Surface Reflectance
VIIRS/NPP Atmospherically Corrected Surface Reflectance 6-Min L2 Swath IP 375m, 750m NRT
10.5067/VIIRS/VNP09_NRT.001
Surface Reflectance Browse
VNP09GA_NRT Gridded Land Surface Reflectance
10.5067/VIIRS/VNP09GA_NRT.001
MODAPS Browse
VNP10_NRT VIIRS/NPP Snow Cover 6-Min L2 Swath 375m NRT
10.5067/VIIRS/VNP10_NRT.001
MODAPS Browse
VNP14IMG_NRT VIIRS/NPP Active Fires L2 Swath 375m
VIIRS/NPP Active Fires 6-Min L2 Swath 375m NRT
Worldview Browse
VNP14_NRT VIIRS/NPP Thermal Anomalies/Fires 6-Min L2 Swath 750m NRT
10.5067/VIIRS/VNP14_NRT.001
MODAPS Browse
VNP21_NRT VIIRS/NPP Land Surface Temperature and Emissivity 6-Min L2 Swath 750m NRT
10.5067/VIIRS/VNP21_NRT.001
MODAPS Browse
VNP29_NRT VIIRS/NPP Sea Ice Cover 6-Min L2 Swath 375m
10.5067/VIIRS/VNP29_NRT.001
MODAPS Browse
VNP30_NRT VIIRS/NPP Ice Surface Temperature 6-Min L2 Swath 750m NRT
10.5067/VIIRS/VNP30_NRT.001
MODAPS Browse

It was always intended that the VIIRS instrument aboard the joint NASA/NOAA Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite would provide a bridge between Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) and the operational Joint Polar Satellite System (JPSS) (formerly NPOESS) VIIRS. In that context, the land science of VIIRS will build and expand on the heritage of land science from the NOAA AVHRR and EOS MODIS. The strength of these systems lies in their time-series of daily multi-spectral observations, which are used to characterize and monitor the land surface at regional to global scales. MODIS provided a new standard in calibrated, science-quality, coarse-resolution satellite observations which will continue with VIIRS. VIIRS data will be used to expand upon the MODIS applications to fire and air quality monitoring, agriculture monitoring and production modeling, carbon modeling and flood and sea ice mapping.

VIIRS Corrected Reflectance Imagery

VIIRS Corrected Reflectance Imagery

The VIIRS Corrected Reflectance imagery is only produced in near real-time. It provides continuity from the MODIS Corrected Reflectance imagery which was developed to provide natural-looking images by removing gross atmospheric effects such as Rayleigh scattering from the visible bands. By contrast the Surface Reflectance product is available in near real-time and as a standard product. Surface Reflectance provides a more complete atmospheric correction algorithm that includes aerosol correction and is designed to derive land surface properties. in clear atmospheric conditions the corrected reflectance product is similar to the SR product but they depart from each other in the presence of aerosols.

Band Combinations

True Color: Red = Band I1, Green = Band M4, Blue = Band M3

These images are called true-color or natural color because this combination of wavelengths is similar to what the human eye would see. The images are natural-looking images of land surface, oceanic and atmospheric features.

The Visible Infrared Imaging Radiometer Suite (VIIRS) Corrected Reflectance imagery is available only as near real-time (NRT) imagery. The imagery can be visualized in NASA's Worldview, Global Imagery Browse Services (GIBS) and Rapid Response. The sensor resolution is 750m and 375m (M Bands are 750m, I Bands are 375m), imagery resolution is 250m, temporal resolution is daily and temporal availability for viewing in GIBS/Worldview is November 24, 2015 - present. View in Worldview

False Color (M3, I3, M11): Red = M3, Green = I3, Blue = M11

This combination is used to map snow and ice. Snow and ice are very reflective in the visible part of the spectrum (Band M3), and very absorbent in Bands I3 and M11 (short-wave infrared, or SWIR). This band combination is good for distinguishing liquid water from frozen water, for example, clouds over snow, ice cloud versus water cloud; or floods from dense vegetation. This layer is similar to the MODIS Corrected Reflectance Bands 3, 6, 7 layer.

The Visible Infrared Imaging Radiometer Suite (VIIRS) Corrected Reflectance imagery is available only as NRT imagery. The imagery can be visualized in Worldview and GIBS. The sensor resolution is 750m and 375m (M Bands are 750m, I Bands are 375m), imagery resolution is 250m, temporal resolution is daily and temporal availability for viewing in GIBS/Worldview is November 24, 2015 - present. View in Worldview

Snow and Ice

Since the only visible light used in these images (Band M3) is assigned to red, snow and ice appear bright red. The more ice, the stronger the absorption in the SWIR bands, and the more red the color. Thick ice and snow appear vivid red (or dark pink), while small ice crystals in high-level clouds will appear pinkish.

Vegetation

Vegetation will appear green in this band combination, as vegetation is absorbent in Bands M3 and M11, but reflective in Band I3. Bare soil and deserts will appear bright cyan in the image since it much more reflective in Band I3 and M11 than Band M3.

Water

Liquid water on the ground will appear very dark since it absorbs in the red and the SWIR, but small liquid water drops in clouds scatter light equally in both the visible and the SWIR, and will therefore appear white. Sediments in water appear dark red.

False Color (M11, I2, I1): Red = M11, Green = I2, Blue = I1

This combination is most useful for distinguishing burn scars from naturally low vegetation or bare soil and enhancing floods.

This combination can also be used to distinguish snow and ice from clouds. Snow and ice are very reflective in the visible part of the spectrum (Band I1), and absorbent in Bands I2 (near infrared) and M11 (short-wave infrared, or SWIR). Thick ice and snow appear vivid sky blue, while small ice crystals in high-level clouds will also appear blueish, and water clouds will appear white. This layer is similar to the MODIS Corrected Reflectance Bands 7, 2, 1 layer.

VIIRS Corrected Reflectance imagery is available only as NRT imagery. The imagery can be visualized in Worldview, GIBS and Rapid Response. The sensor resolution is 750m and 375m (M Bands are 750m, I Bands are 375m), imagery resolution is 250m, temporal resolution is daily and temporal availability for viewing in GIBS/Worldview is November 24, 2015 - present. View in Worldview

Vegetation and bare ground

Vegetation is very reflective in the near infrared (Band I2), and absorbent in Band I1 and Band M11. Assigning that band to green means even the smallest hint of vegetation will appear bright green in the image. Naturally bare soil, like a desert, is reflective in all bands used in this image, but more so in the SWIR (Band M11, red) and so soils will often have a pinkish tinge.

Burned areas

Burned areas or fire-affected areas are characterized by deposits of charcoal and ash, removal of vegetation and/or the alteration of vegetation structure. When bare soil becomes exposed, the brightness in Band I1 may increase, but that may be offset by the presence of black carbon residue; the near infrared (Band I2) will become darker, and Band M11 becomes more reflective. When assigned to red in the image, Band M11 will show burn scars as deep or bright red, depending on the type of vegetation burned, the amount of residue, or the completeness of the burn.

Water

Liquid water on the ground appears very dark since it absorbs in the red and the SWIR. Sediments in water appear dark blue. Ice and snow appear as bright turquoise.

Clouds comprised of small water droplets scatter light equally in both the visible and the SWIR and will appear white. These clouds are usually lower to the ground and warmer. High and cold clouds are comprised of ice crystals and will appear turquoise.

Last Updated: Mar 13, 2019 at 9:49 AM EDT