Imagine a future wherein global and national institutions have achieved a portion of their sustainable development goals; the health of Earth’s ecological systems is much improved, although some degradation continues; the world consumes 25 percent less fossil fuel and global population growth levels off in 2050, but persistent income inequality continues, leaving some low-income people vulnerable to societal and environmental change.
Next, imagine a second, alternative future in which the world has placed its faith in competitive markets and innovation, resulting in rapid technological progress and development. There is strong investment in health and education, and ecological problems like air pollution are successfully managed at the local and regional levels. At the same time, the push for economic and social development leads to intensive fossil fuel use and the global economy grows, but global population peaks and then declines.
Now, with these two imaginary worlds in your mind, ask yourself: How might the worlds in these two futures differ in terms of greenhouse gas emissions, land use, and population density in urban and rural areas?
These are the types of questions that members of the climate change research community ask themselves as they perform analyses of future climate impacts, the populations and infrastructure that might be vulnerable to them, and strategies for adaption and mitigation. To aid their analyses, the members of this research community created a set of five scenarios (not unlike the hypothetical scenarios described above) known as Shared Socioeconomic Pathways (or SSPs). Established over the last several years in a joint community effort, the five SSPs describe plausible global development patterns leading to different situations for mitigating and adapting to climate change.
Recently, NASA’s Socioeconomic Data and Applications Center (SEDAC), released a collection of datasets offering global, spatial population and urban land projections based on the five SSPs. SEDAC is operated by the Center for International Earth Science Information Network (CIESIN), a unit of the Earth Institute at Columbia University based at the Lamont-Doherty Earth Observatory in Palisades, New York. As part of its mission to synthesize Earth science and socioeconomic data and information in ways useful to a wide range of decision makers and applied science users, SEDAC archives, manages, and distributes NASA Earth Observing System Data and Information System (EOSDIS) socioeconomic and Earth science data, resources, and tools.