Typhoon Kai-Tak hovered from July 5 to July 8 over the same 150-kilometer (93-mile) area in the South China Sea, generating winds from 20 to 40 meters per second (44.8 to 89.6 mph). "It's rare for a cyclone to stay in the same place for one or two days," Liu said. "The South China Sea happens to be a closed sea, so there is little outside influence (from ocean currents) on the thermal and biological responses."
Because Kai-Tak lingered, the researchers had more time to look at the ocean water movement than they would have if the typhoon had rushed past. And because the South China Sea is closed, they knew all the water movement was caused directly by Kai-Tak.
Normally, currents in the South China Sea cause the water to remain in static layers, so water on top always stays on top, and water deep below the surface always stays below the surface. This is because in a subtropical ocean, the normal large-scale surface circulation is clockwise, Liu explained.
But Kai-Tak, like all Northern Hemisphere cyclones, moved counterclockwise (Southern Hemisphere cyclones move clockwise). This created a hollow in the sea, similar to the funnel that forms above a drain when water leaves a bathtub. But in the sea there is, of course, no drain, so water from below the hollow moved up to fill the empty spot.
"The wind and current in a typhoon are anti-clockwise (cyclonic), causing surface water to diverge," Liu said. "When surface water diverges, it has to be replaced by water from the deep. Although the area covered by a typhoon is very small compared with the whole ocean basin, and a typhoon lasts only a short time, we suggested that the cumulative effect of many typhoons might be sufficient to offset the basin-wide circulation patterns."
So, as Kai-Tak, a category 2 typhoon on the Saffir-Simpson hurricane scale, floated over the sea, it forced cold water up from 70 meters below up to the top 20 to 30 meters of surface layer, which caused the cold spot detected by the TRMM sensor. The deeper the water, the more nutrient-rich it is. But since sunlight only reaches surface water, phytoplankton cannot grow deep below the surface. When the cyclone forced the deep water to the surface, sunlight hit the nutrients, which caused phytoplankton to form. SeaWiFS then captured the increase in chlorophyll-a.
"When cold water comes up, it brings nutrients with it," Liu said. "It is a dramatic event that we can see in the satellite imagery. The cool water is a strong blue color, and the biological bloom is visible in the same spot."
Before Kai-Tak, SeaWiFS measurements showed chlorophyll-a measurements at levels typical for summertime tropical waters. But after the cyclone, chlorophyll-a measurements increased 30 times, Liu said. "We knew the cyclone would bring up nutrients from below, but no one had really seen this before," Liu said. "The satellite data now enable us to detect things we could not see through the clouds--it's really revolutionary."
Scientists had long suspected that strong winds cause entrainment, or vertical mixing, in tropical and subtropical oceans, explained Lin and colleagues in a paper published in the October 2003 issue of Geophysical Research Letters. But it took measurements from the three satellite sensors to prove it.
"This research is important because it confirms that the impact of cyclones on ocean primary production is significant, at least in the South China Sea," Lin said. "It also points to the potential impact tropical cyclones have on climate change, since primary production is critical to global climate."
The new technology has also illuminated future research options for the scientists. "We've now established a method to quantify the cyclone-induced phytoplankton growth using a combination of remote-sensing data and models," Lin said. "This method can be applied to other typhoon cases and in different oceanic regions, too. Previously, it was impossible to do such work due to the lack of observations by traditional means."
The researchers are encouraged to find good news in such a disastrous force--especially when it had been so difficult to prove their theory in the past. "Cyclones have a potent effect on carbon in the South China Sea," said Liu. "The catch is that for most people, they are a destructive force. But if you look at it another way, they enhance life."
References
Killer Storms in Philippines and Japan [4]. BBC News. Accessed July 26, 2004.
Typhoons leave 3 dead in Japan, 42 dead in Philippines [5]. CNN. Accessed July 26, 2004.
For more information
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)
NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC)
Tropical Rainfall Measuring Mission (TRMM)
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project
Air-Sea Interaction and Climate
About the remote sensing data used |
Satellite |
Tropical Rainfall Measuring Mission (TRMM) |
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) |
Parameter |
cyclones and phytoplankton production |
cyclones and phytoplankton production |
DAAC |
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) |
NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) |