When most people think of islands, they imagine sunny beaches and palm trees, not sweltering summer days and polluted air. But hot, smoggy cities often become what scientists call "urban heat islands," where the air temperature can be 1 to 4 degrees Celsius (about 2 to 8 degrees Fahrenheit) warmer than surrounding rural areas.
Urban heat islands occur because cities tend to have large areas of dark roofing and paving material that absorb instead of reflect sunlight, causing surface and air temperatures to rise. Higher temperatures, in combination with air pollutants emitted by cars and industrial facilities, spur chemical reactions in the air that lead to more intense concentrations of ground-level ozone, which is the main ingredient in smog.
Higher temperatures and smog are more than just inconveniences to city dwellers; they can be a health hazard. But to understand how urbanization contributes to the heat island effect, scientists must analyze the urban landscape.
Dale Quattrochi, geographer and senior research scientist at the Marshall Space Flight Center, studies the urban heat island effect in Atlanta. Using data from NASA's Advanced Thermal and Land Application Sensor (ATLAS), flown onboard a Lear jet, Quattrochi measured temperatures across Atlanta. He then analyzed Landsat satellite data, obtained from NASA's Land Processes Distributed Active Archive Center (LP DAAC), to study the city's land cover patterns.
Quattrochi found that Atlanta's dramatic growth and extensive land cover change over the past few decades exacerbated the heat island effect. Landsat images of metropolitan Atlanta between 1973 and 1992 revealed that developers had cleared almost 380,000 acres of trees, replacing them with retail centers, roads, and about 270,000 acres of tract housing. Landsat data also revealed that an additional 180,000 acres of trees were cleared between 1993 and 1999.
Quattrochi's advice to city managers? Plant more trees. Trees and other vegetation help alleviate the urban heat island effect by providing shade, intercepting solar energy, cooling the air, and reducing air pollution.
While Quattrochi admits that shade is mostly a local effect, he stresses the importance of urban forests, or large collections of trees, such as those found in parks. Aside from providing large areas of shade, "The urban forest intercepts a significant amount of solar energy that would otherwise be used to heat up non-natural urban surfaces," he said.
When trees absorb sunlight, they don't heat up like urban materials do. In fact, trees transform solar energy into cool air through a process called evapotranspiration. Trees transpire, or release, water through pores in their leaves, and sunlight helps evaporate this water from the leaf surface. In other words, trees "sweat" to cool off, just like people do.
Trees also improve air quality by absorbing air pollutants such as sulfur dioxide and carbon monoxide. But not just any tree will do. Trees like oak and sycamore emit higher amounts of biogenic volatile organic compounds (BVOCs). BVOCs are naturally occurring pollutants that contribute to the development of ground-level ozone. Planting trees such as maple and elm, which are low BVOC emitters, can improve a city's air quality more effectively than high BVOC emitting trees.
Besides planting trees, cities can also "lighten up" and reduce the amount of dark surfaces that absorb heat. "A number of roofing companies are very proactive in Atlanta, and they're trying to use highly reflective roofing materials for warehouses and other buildings with very large square footage," said Quattrochi. Chicago and Atlanta are also starting to use reflective roofing for new construction.
Other cities have initiated the planting of rooftop gardens on city buildings to help cool the urban surface. Rooftop gardens insulate buildings and reduce energy consumption by intercepting solar energy that would otherwise heat the roof surface. And because rooftop gardens are irrigated, evapotranspiration helps cool the air.
Although Quattrochi's studies have focused on individual cities, the ATLAS sensor that he relied on for local data collection has become too costly to use. Quattrochi now expects to build on the archive of ATLAS data with remote sensing data from the Landsat and Quickbird satellites, as well as from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to monitor urban vegetation and land cover changes in metropolitan areas.