Remote sensing is one of the most valuable tools the team is using. "Satellite imagery enables us to look at the age and characteristics of a site's surface geology, which is essential to understanding the rate at which that site will recover from disturbances," said Gaydos.
The scientists use geologic maps created from Landsat 5 data, supplied by NASA's Land Processes Distributed Active Archive Center (LP DAAC) in Sioux Falls, SD. In addition, Landsat data have proved invaluable for identifying study unit boundaries when the team is working in the Mojave. The team also plans to use satellite data to examine dust movement in the desert, an important symptom of disturbance.
The researchers work with high-tech tools such as digital ortho-photos created by the USGS, and imagery from the Advanced Visible and Infrared Imaging System (AVIRIS). Digital ortho-photos are produced by applying corrections to aerial photos using an elevation model. "This process enables us to remove distortions from aerial photos so that they scale correctly, which helps us interpret what we're seeing," said Gaydos.
The multi-band capability of the AVIRIS sensor enables computer enhancement of land features, a vital part of the geologic mapping process. "This application of AVIRIS data is still experimental, but it shows lots of promise in mapping the surface geology of the Mojave Desert," said Gaydos.
These tools have greatly contributed to some of the project's key findings. First, the research team found that under most circumstances, land seems to recover faster in the years immediately following the disturbance than in later years. In addition, not all areas recover at the same rate.
"The good news is that the desert seems to recover faster than earlier models predicted. The bad news is that it still takes the land a long time to return to its original state, and, in some cases, it may never be exactly what it was before the disturbance occurred," said Gaydos.
As an example, Gaydos described one of the project's test sites that lies near an old railroad line built in the early 1900s. For the past 50 years or so since the railroad was abandoned, a berm has acted as an artificial dam for surface processes, such as erosion and runoff. By digging trenches on the slope side of the railroad line, team members measured nearly a dozen flood events. Successive flash-floods rinsed sediment down and built up the surface nearly a meter. "This tells us that we're dealing with a very dynamic system in the Mojave," said Gaydos. "At various intervals, flood events wash the sediment down, the plants adapt, and the desert renews itself."
Land management ranks are also subject to renewal. To keep changing land management and restoration staffs apprised of current findings, Gaydos and his team must maintain regular communications with those in the field.
Sustaining investment is critical, according to Gaydos, because the project still has a way to go. "In the past, the Mojave Desert has been benignly neglected," he said. "People haven't worried about it much — it's not Yellowstone or the Everglades, or any of the places that tend to come to mind when people think of protecting the environment."
Fortunately, those values seem to be changing, and the desert "playground" is now deemed a valuable resource.
For more information
NASA Land Processes Distributed Active Archive Center (LP DAAC)
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
About the remote sensing data used |
Satellite |
Landsat-5 |
Sensor |
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) |
Parameter |
disturbance to desert ecosystems |
DAAC |
NASA Land Processes Distributed Active Archive Center (LP DAAC) |