NASA’s Earth Science Data Systems (ESDS) Program defines open science as a collaborative culture enabled by technology that empowers the open sharing of data, information, and knowledge within the scientific community and the wider public to accelerate scientific research and understanding. For Kaylin Bugbee and her ESDS colleagues, open science brings both tremendous potential for scientific discovery along with challenges for both data users and data providers.
In recently-published peer-reviewed article, Bugbee, an ESDS data manager and a member of NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center in Huntsville, AL, and her coauthors, IMPACT manager Rahul Ramachandran and ESDS Program Executive Kevin Murphy, provide a broad look at the current state of open science. She and her coauthors observe that the combination of massive volumes of data and the technology to work with these data collaboratively is leading to new ways of pursuing scientific investigations. They also note that oversight is needed to ensure that large repositories of aggregated data, sometimes referred to as data lakes, don’t turn into data swamps.
What do we mean when we talk about open science and how is this leading to a paradigm shift in how science is conducted?
To me, there are a number of different definitions or understandings of what open science is. I tend to adopt a broader definition of open science that includes three aspects. First, there’s open access to all aspects of research. This includes open access to data, software, and any information that comes out of research such as journals, blogs, and similar products. Second, there’s open access to the scientific process. This means being transparent with the process and also being open to different communities being part of the scientific process. We’re seeing this more and more, especially with citizen science activities. Finally, there’s the aspect of fostering a collaborative and inclusive process that is welcoming to everyone and open to everyone.
What are some of the challenges to making science open?
There are several that I would categorize as coming from a needed cultural change.
For example, scientists want to spend time doing science, and while they may recognize the value of making their data or code available, this is an added step that might take them away from conducting research. Some researchers also don’t realize that there is interest in the things that they make as products of their research, such as algorithms or code to analyze data.
Another challenge is working out the research rewards system. In planetary science, for example, researchers devote a huge chunk of their career to an instrument that is flown to a distant celestial body. It can take years for the instrument to get to the point of even collecting data. The scientist has a significant investment in their career just to get these data. It’s important to keep in mind the anxiety they might have about their research, their career, and the credit they receive for their work given the knowledge that the data they collect might be openly available as soon as possible not just to them, but to the world.
A further challenge is one of equity. For example, not everyone has reliable access to the internet or funding to support computing costs. While science may be more open, equity will be a challenge that needs to be addressed for certain groups.
ESDS talks about open science being a collaborative culture. How is open science leading to more collaborative science?