Dr. Lucy Hutyra, Associate Professor of Earth and Environment, Boston University; Director, Hutyra Research Lab, Boston University, Boston, MA
Research interests: Using Earth observing data to improve our understanding of the carbon cycle, particularly how changes in vegetation and land use impact flows of carbon between the biosphere and the atmosphere.
Research highlights: Since colonial days, Boston, MA, has remained one of the largest U.S. cities, and the population of this metropolis is poised to surpass 700,000 residents, according to the U.S. Census (the city last hit this milestone in the 1920s). One consequence of this large population, though, is the production of high carbon emissions.
According to 2015 figures from the Massachusetts Department of Transportation, the entire Boston Central Artery/Tunnel project processes more than 530,000 vehicles per weekday and the Massachusetts Bay Transportation Authority (MBTA) that services the Boston region logs nearly 1.3 million daily trips on its subway, bus, and commuter rail system. While not all of these vehicles use fossil fuel-burning internal combustion engines, those that do create about 8.8 kilograms of carbon dioxide (CO2) for every gallon of gasoline burned, according to the U.S. Environmental Protection Agency, and the average passenger vehicle equipped with an internal combustion engine emits roughly 4.6 metric tons of CO2 per year. All this carbon adds up, especially in urban areas like Boston. And these urban areas are expected to grow dramatically over the next decade.
In fact, by 2030 “urban areas are projected to house 60% of people globally and one in every three people will live in cities with at least half a million inhabitants,” according to a United Nations report. As Dr. Lucy Hutyra observes, the anticipated growth in urban areas over the next decade is “more urban land expansion than in all of history.”
Hutyra’s research focuses on developing a better understanding of how fossil fuel emissions of CO2 coupled with biological activity in urban environments influences atmospheric CO2 concentrations. Much of her work is conducted out of the Hutyra Research Lab at Boston University and spans urban-to-rural gradients. NASA remotely-sensed atmospheric data enable her to scale her ground-level carbon investigations across much larger regions. This is critical, given the impact carbon has on life on Earth.
Carbon is the fourth most abundant element in the universe by mass, and exists in gaseous forms that include carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO). Carbon constantly cycles in and out of the atmosphere, with CO2 being the most abundant atmospheric carbon-bearing gas. In the absence of external inputs, the carbon cycle stays in balance, with natural CO2 inputs from sources such as animals and forest fires roughly equaling natural sinks that take CO2 out of the atmosphere, like oceans and the process of photosynthesis.
Human activities, including urban growth, deforestation, and the burning of fossil fuels, have led to an increase in atmospheric CO2 beyond what would be expected from natural sources. In 2017 alone, more than 41 billion tons of CO2 were emitted to the atmosphere from anthropogenic sources including land use change and the burning of coal, oil, and gas, according to the 2018 Global Carbon Budget report created by the international Global Carbon Project. This excess atmospheric CO2 helps trap radiated heat, much as the glass of a greenhouse prevents the escape of solar radiation. Thanks to instruments aboard Earth observing satellites, atmospheric CO2 can be measured and tracked 24/7.