Dr. Adam Storeygard, Associate Professor of Economics, Tufts University, Medford, MA
Research interests: Urbanization, transportation, and the economic geography of the developing world, including research to explain city growth in sub-Saharan Africa.
Research highlights: The Greek word oikos means “house.” But the concept of oikos extends beyond a mere building. It also can refer to a family or any dwelling area, such as a community or even a nation. When combined with Greek suffixes, oikos becomes an even more encompassing—and interesting—word.
Adding the Greek suffix -logia, which can be defined as “the study of,” to oikos creates a word meaning “the study of the house”—what we more commonly recognize as the contemporary word ecology. Adding the Greek suffix -nomos, which can be translated as “law, custom, or management,” gives us the contemporary word economy. The study of the house (ecology) and the management of the house (economy) are intertwined, and the connection is much more than mere etymology.
In fact, NASA’s Earth Observing System Data and Information System (EOSDIS) maintains a large socioeconomic data collection that is archived at and distributed by NASA’s Socioeconomic Data and Applications Center (SEDAC), which is one of the EOSDIS’ discipline-specific Distributed Active Archive Centers, or DAACs. Hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University, SEDAC serves as an “Information Gateway” between the socioeconomic and Earth science data and information domains, and synthesizes Earth science and socioeconomic data and information in ways useful to a wide range of decision makers and other applied users. Dr. Adam Storeygard is one of these applied users.
Remotely-sensed data from orbiting sensors designed to study our home planet are integral components of Storeygard’s economic research into urbanization, transportation, and the developing world. The data collected by these satellite-borne instruments, particularly nighttime lights data, help him analyze economic development in remote or developing areas.
Storeygard’s specific research focus is sub-Saharan Africa, a vast region that encompasses all African nations partially or fully located south of the Sahara Desert. The roughly one billion residents of this region have a life expectancy of about 61 years (up from 40 years in 1960) and 41% live in extreme poverty, according to the United Nations Development Programme. Relying on traditional economic measurements for research into the productivity and development of this region brings a unique set of challenges.
For example, one foundational economic measurement is a country’s Gross Domestic Product, or GDP. GDP is the total value of goods produced and services provided in a country during one year. However, tracking economic activity in developing countries or remote regions is difficult. As noted by the World Bank, “Many statistical offices, especially those in developing countries, face severe limitations in the resources, time, training, and budgets required to produce reliable and comprehensive series of national accounts statistics.” A key difficulty is the inability to account for unreported economic activity, such as informal transactions or agricultural production that is consumed rather than marketed. These “hidden” transactions likely represent a larger share of the economy in many developing countries. For Storeygard, getting accurate GDP metrics for sub-Saharan Africa required a different approach.
Storeygard decided to use remotely-sensed nighttime lights data as a proxy for economic activity, and notes that nighttime lights data address two problems with GDP. For one, nighttime lights data are globally consistent, which enables them to be combined with more traditional sources of economic data to provide improved estimates of economic growth for countries with weak statistical systems. Secondly, traditional measures of economic activity are often unavailable for sub-regions within countries in the developing world (such as states, municipalities, or counties).
His primary source for nighttime lights data is the Defense Meteorological Satellite Program (DMSP) series of satellites. The first DMSP satellite was launched in 1962, and the program is jointly run by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Air Force. The primary weather sensor on the spacecraft is the Operational Linescan System (OLS), which provides the nighttime lights data used by Storeygard. First flown on DMSP satellites in 1976, the OLS is an oscillating scan radiometer with low-light visible and thermal infrared (TIR) imaging capabilities.