1. Earth Science Data Systems (ESDS) Program
  2. Artificial Intelligence and Machine Learning

Artificial Intelligence and Machine Learning

Seed image at top left enables a machine to identify three similar images at bottom.
Starting with a seed image selected by a user (upper left), a tool created by developers working on a NASA IMPACT-supported AI/ML effort called SpaceML enables a machine to find images with similar patterns or criteria available through NASA's Global Imagery Browse Services (GIBS) (lower images). Click on image for larger view. SpaceML image.

Artificial Intelligence (AI) refers to the simulation of human decision-making capabilities in machines. Machine learning (ML) is a subfield of AI that uses statistics and mathematical models to detect patterns in data. When applied to Big Data collections, such as NASA Earth observing data, AI and ML can be used to sift through years of data and imagery rapidly and efficiently to find relationships that would be impossible for a human to detect. NASA's Earth Science Data Systems (ESDS) Program is committed to the use of AI and recognizes its potential to significantly advance existing data systems capabilities, improve operations, and maximize the use of NASA Earth observing data.

ESDS AI/ML research is conducted primarily through NASA's Interagency Implementation and Advanced Concepts Team (IMPACT). IMPACT is an interdisciplinary team that works to further the ESDS goal of overseeing the lifecycle of Earth science data to maximize the scientific return of NASA's missions and experiments for scientists, decision makers, and society. The IMPACT ML team consists of machine learning specialists, computer scientists, and Earth science data specialists and works to build tools and pipelines for applying ML algorithms to NASA Earth science datasets to improve data discovery. 

Along with AI/ML work through IMPACT, teams at NASA Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs) are applying AI and ML to the data they archive and distribute. One example is the ongoing work at NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC) to implement a machine learning framework using natural language processing (NLP) to make it easier for GES DISC data users to find appropriate datasets.

ESDS also fosters AI/ML research through NASA's Advancing Collaborative Connections for Earth System Science (ACCESS) program. This competitive program develops and implements technologies to effectively manage, discover, and utilize NASA's archive of Earth observations for scientific research and applications in support of NASA Earth science research goals. The ACCESS 2019 solicitation specifically sought technology developments for ML related to NASA Earth science data systems (including new training datasets for ML).

Another NASA-supported undertaking for fostering AI/ML research is the Frontier Development Lab (FDL). The FDL was created as an initiative through NASA’s Office of the Chief Technologist, and is an applied research accelerator based at NASA’s Ames Research Center in Silicon Valley, CA. Through internal NASA collaborations as well as collaborations with academia and Silicon Valley companies, the FDL works to further NASA AI efforts. 

NASA ESDS Program AI and ML Resources

AI in Action

Read about the many ways AI is being used in research and in the development of NASA-supported products and applications to improve the usefulness of NASA Earth observing data:

ESDS AI/ML Research

NASA's open science policy makes more than 50 petabytes (PB) of Earth science data fully available along with the code for analyzing these data and all supporting documents. Global research teams are finding new ways to apply AI to these data and systems to enable faster, more efficient research. Read more about work that's taking NASA data to the next level:

Additional ESDS-Supported AI/ML Resources

Trillion Pixel Challenge at Oak Ridge National Laboratory (ORNL): The number of pixels required to cover the surface of Earth is easily in the trillions. The Trillion Pixel GeoAI challenge explores the barriers, opportunities, and paths forward in exploiting high resolution, planetary imagery involving 100s of trillions of pixels.

Global Flood Detection Challenge: To help advance efforts to bring AI and ML to the remote detection of floods, IMPACT is helping organize the Emerging Techniques in Computational Intelligence (ETCI) 2021 Competition on Flood Detection.

IMPACT Blog Posts

IMPACTful News

Published May 25, 2021

Page Last Updated: May 25, 2021 at 1:41 PM EDT