National Aeronautics and Space Administration

Cloud Bursting to Augment On Premise Resources - ADAPT

Hoot Thompson hoot.Thompson@nasa.gov

www.nasa.gov

Cloud – A Simple Definition

Genesis Of ADAPT

rdware

Discover HPC System

- ~3400 compute nodes
- ~50 petabytes shared storage
- 70+ petabytes tape storage
- MPI/batch environment
- Bare metal processing

Started life as the Science Cloud, latter rebranded the Advanced Data Analytics Platform

ADAPT 1.0

- 300+ hypervisors
- 10+ petabytes shared storage
- Virtual machines (VM)
- Custom management scripts

ADAPT 2.0

- 200+ hypervisors
- VMs
- OpenStack cloud software

ADAPT Highlights

Combination of new and old hardware

- New equipment for storage and management
 - ~8PBs of file system storage
- Over 500 hypervisors
 - Mix of Westmere, Sandy Bridge, Ivy Bridge and Broadwell processors
- High-speed interconnect
- GPUs K40s now, V100s soon Both Linux and Windows virtual machines (VM)
- Shell access to Linux VMs
- Desktop (Guacamole) access to Windows VMs
- Dual authenticated, NCCS LDAP
- Script and OpenStack managed

ADAPT Target Users

- Use large amounts of distributed observation and model data to generate science OR perform multiple numerical iterations for engineering (small data)
- Launch loosely coupled processes requiring little to no synchronization
- Require more agile development with many small runs; utilization can be low on average (cloud like)
- Leverage third party tools Python, IDL, MATLAB, custom code
- Need a flexible environment jobs run in custom user space, latest libraries
- Concentrate on non-ITAR applications

Shared Directories and Common Datasets

NASA

Shared Directories

- \$HOME
- \$NOBACKUP

Common Datasets

- Available for direct use
- Individual investigators don't have to invest time to locate and transfer data into system
- Avoids duplications of large datasets on system
- Additional datasets can be added, including generated data

Software Stack

External License Servers

Open Source Tools Python, NetCDF, GDAL, R, etc.

Commercial Tools Intel Compiler (C, C++, Fortran), IDL (4 seats)

Operating Systems Linux (Debian, CentOS) and Windows Server2012 Open source tools:

- Very flexible
- If the open source tool does not need elevated privileges to install, the user can install the software in their home or scratch directories
- Commonly used tools may be installed in a shared directory for multiple users
- If the tool requires elevated privileges, users should submit a ticket to the NCCS for assistance.

Job management:

- Parallel ssh pdsh
- SLURM batch queuing

Virtual machines can be customized based on the end user application needs. The NCCS will work with you to create customized VMs specific to meet your needs.

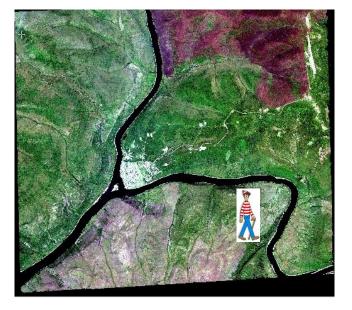
ADAPT Use Cases

Science

- Arctic Boreal Vulnerability Experiment (ABoVE)
- High Mountain Asia (HMA)
- Head in the Clouds
- ArcGIS Activities
- Ice, Cloud, and Land Elevation Satellite-2 (ICESAT-2)
- Goddard's LiDAR, Hyperspectral & Thermal Imager (G-LiHT)

Remote Sensing, Big Data

Engineering

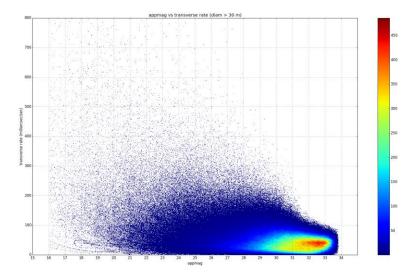

- CALET (CALorimetric Electron Telescope for ISS)
- Asteroid Hunters Near Earth Objects
- Laser Communications Relay
 Demonstration (LCRD) Project –
 ITAR FPGA simulations
- Wide Field Infrared Survey Telescope (WFIRST)

Numerical Iterations, Small Data

Forest Canopy Surface Elevations

- Understanding forest patterns using DigitalGlobe highresolution satellite imagery
- Using multiple VMs and Ames Stereo Pipeline (ASP) on ADAPT to process Digital Elevation Models

NEO Survey Simulations



New NEO survey simulations and studies facilitated by the ADAPT system help meet a number of GSFC and NASA NEO research needs

- NEODAC simulation models the performance of both GSFC and NASA proposed survey missions
- Supports modelling of a complex sky survey and exploration of the duty-cycle/pointing-scheme trade space
- Supports rapid testing of various detection models

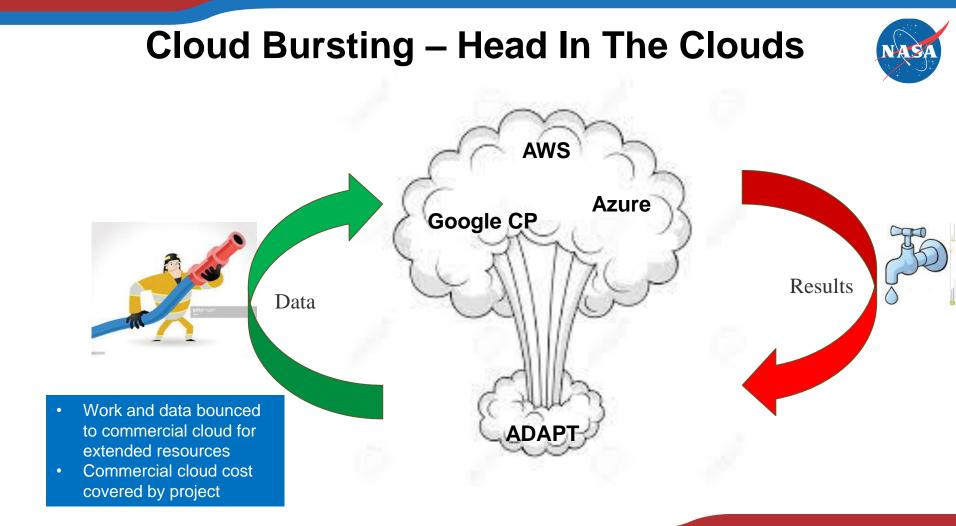
With ADAPT, a sim with 60~ million objects propagating at time-steps of a 5-15 seconds over a few months can be completed in 2-4 days. Outputs can be processed with new detection models and scan patterns in minutes.

Heatmap of synthetic NEO population's brightness and speed over a few days

Changes Coming To ADAPT

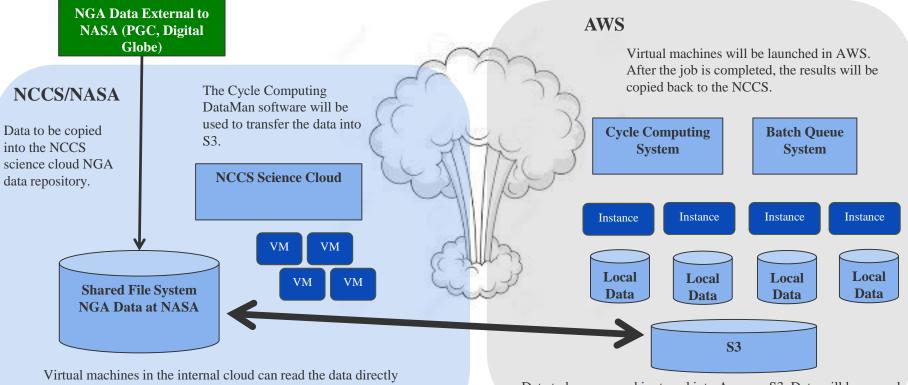
Convert InfiniBand network to Ethernet

• Better utilization of container-based hypervisors


Fold ADAPT 1.0, where feasible, into OpenStack control

• Facilitate a self-service model

Introduce Cloud Bursting


• Leverage commercial clouds to augment processing

Workflow – Managed By Cycle Computing

Virtual machines in the internal cloud can read the data directly from the shared disk in the NASA internal cloud. No additional data movement is required.

Data to be processed is staged into Amazon S3. Data will be moved to the local storage of the VM's for processing.

Initial Test Runs – AWS Spot Instances

Ran about 1/3 of UTM Zone 32 – Quickbird data

- Data pre-staged in AWS post mosaicing
- 200 instances (right sized) using AWS spot pricing
- All jobs ran successfully (5 6 hours) and were not preempted
- Each job consumed about 4.3 GB peak of memory using a single core
- All results were pushed to S3
- Only classifier portion of the processing
- Less than 100MB of return data per tile

Using AWS spot instances

- The entire test run cost \$80
- Can do an entire UTM zone for ~\$250
- Cost for all 11 UTM Zones ~\$2,750
- Cost for all 11 UTM Zones and all 4 satellites ~\$11,000

Spot Instances

- Propose a bid price for a spot instance
- Spot instances run when your bid price exceeds the spot price
- Not guaranteed to run indefinitely
- Reduce costs by 50% to 90% from on-demand instances

Cloud Resource Monitoring

s	MREQUA 🔻	TRIC	CS SYSTEMS - REPORTS	MREQU
now: All - Instance	s - by MachineType -			🔅 Configure Mast
100			Cluster Performance Stats	
100			Time Frame: Week	
50	The second se		CPU	
			100%	Average CPU Idle
016:00 18:00				Average CPU Wait
16:00 18:00	20:00 22:00 29Oct 02:00 04:00			Average CPU System Average CPU Nice
🔒 🤣 Show Det	tail Q Search		50%	Average CPU User
Time	Message			Average CPU Steal
4:48 PM	OND Node cm in cluster vegmap-a finished starting		M	
4:39 PM	Launched node cm in cluster vegmap-a		0% 18:00 20:00 22:00 29Oct 02:00	
4:39 PM	 Started cluster vegmap-a 	_	Memory	
10/29/15, 5:14 PM	Oluster vegmap-a has finished terminating			Total Memory Available
10/29/15, 5:14 PM	I Terminated 1 instance for 1 node in cluster vertex	эp	1.06 70	Total Memory Claimed
10/29/15, 5:14 PM	I Terminating cluster vegmap-a		1.86 TB	
10/29/15, 2:19 AM	I Terminated 1 instance for 1 node in cluster vi			
10/29/15, 2:17 AM	I Terminated 1 instance for 1 node in cluster vi		953.67 GB	
10/29/15, 2:17 AM	I Terminated 1 instance for 1 node in cluster vi			
10/29/15, 2:17 AM	① Terminated 1 instance for 1 node in cluster vi		0 B 18:00 20:00 22:00 29Oct 02:00	
10/29/15, 2:17 AM	① Terminated 1 instance for 1 node in cluster vertex		Network	
10/29/15, 2:17 AM	① Terminated 1 instance for 1 node in cluster vertex			Total Bytes Received
LO/29/15, 2:16 AM	① Terminated 1 instance for 1 node in cluster vertex		2.79	Total Bytes Sent
10/29/15, 2:16 AM	① Terminated 1 instance for 1 node in cluster vertex		GB/s	
LO/29/15, 2:16 AM	① Terminated 1 instance for 1 node in cluster vi		1.86 GB/s	
LO/29/15, 2:05 AM	① Terminated 1 instance for 1 node in cluster vertex		953.67	
10/29/15, 1:59 AM	① Terminated 1 instance for 1 node in cluster vertex		MB/s 0 B/s	
10/29/15, 1:58 AM	 Received autoscale start request for 4 total control 		18:00 20:00 22:00 29Oct 02:00	
10/29/15, 1:57 AM	Received autoscale start request for 6 total cr			

Cloud Bursting Next Steps

Reconstitute Cycle Computing topology

• Now part of Microsoft

Perform Head in the Clouds processing with new algorithms

• Multiple commercial clouds – AWS and Azure

Devise cloud bursting benchmark

• Incorporate data flow and processing

Understand how Slurm developers are approaching problem

• Leverage existing batch system knowledge

National Aeronautics and Space Administration

!!! And Now A Commercial Break !!!

4 **S**

Genesis Of The Goddard Private Cloud

Discover HPC System

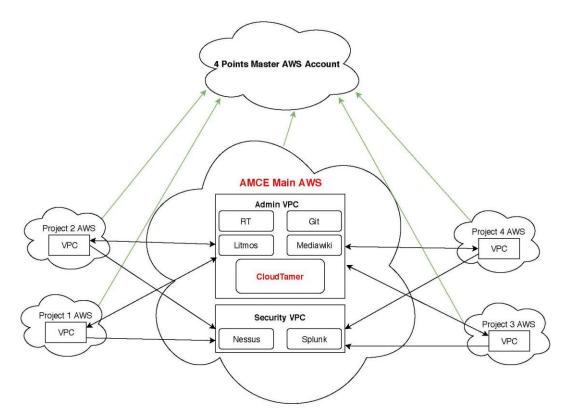
- ~3400 compute nodes
- ~50 petabytes shared storage
- 70+ petabytes tape storage
- MPI/batch environment
- Bare metal processing

ADAPT 1.0

- 300+ hypervisors
- 10+ petabytes shared storage
- Virtual machines (VM)
- Custom management scripts

ADAPT 2.0

- 200+ hypervisors
- VMs
- OpenStack cloud software



Hardware

GPC Prototype


- ~35 hypervisors (VM host)
- ~700 terabytes shared storage
- OpenStack cloud software

AIAST Managed Cloud Environment

NASA

National Aeronautics and Space Administration

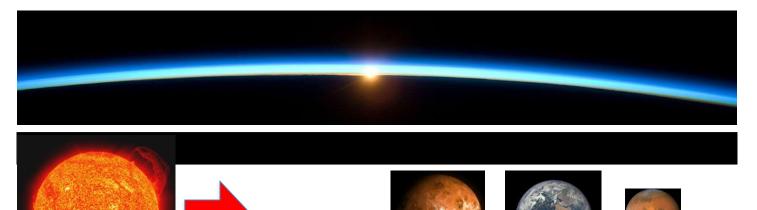
Questions??

NAS

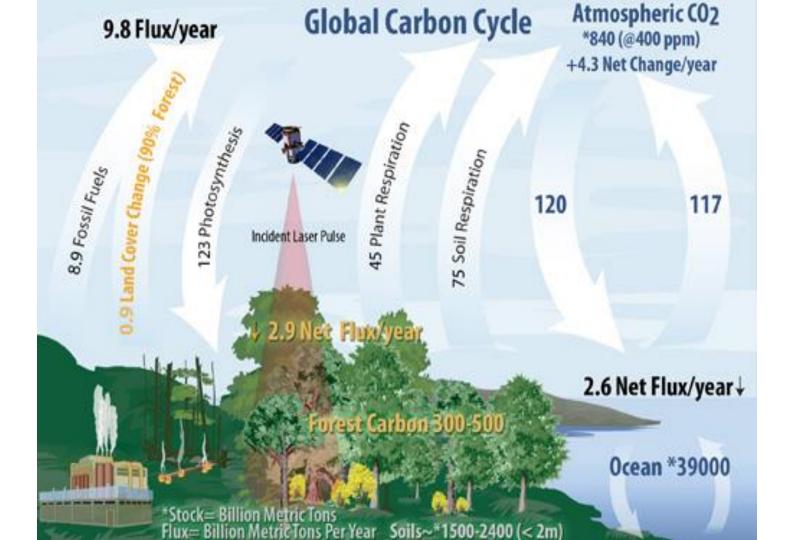
Hoot Thompson hoot.thompson@nasa.gov

www.nasa.gov

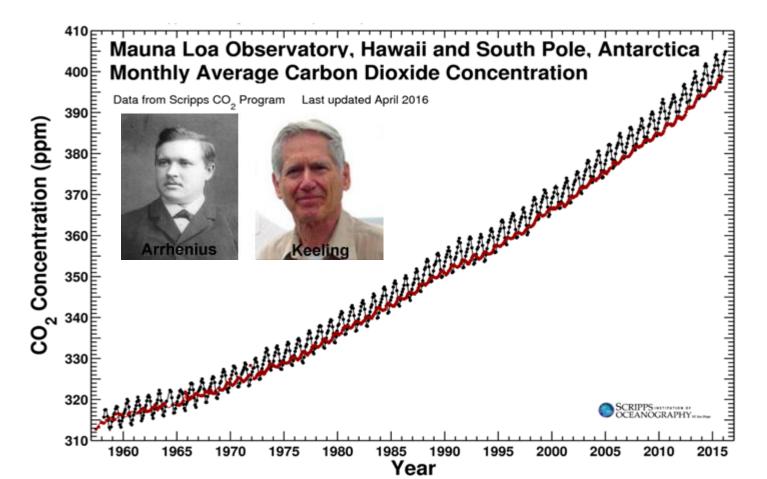
Head in the Clouds Counting Trees

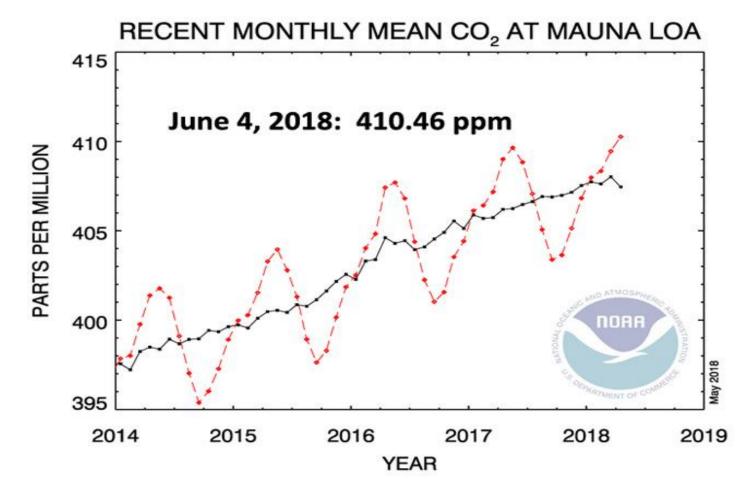

Compton James Tucker III (aka Jimmy, Jim, Jimbo, Compton, Tucker, etc.

Collaborators: Ebo David, Katie Melocik, Erin Glennie, Jorge Pinzon, Hoot Thompson, Dan Duffy, Julian Peters, Ellen Salmon, Bruce Van Artsen, Judy Strohmaier

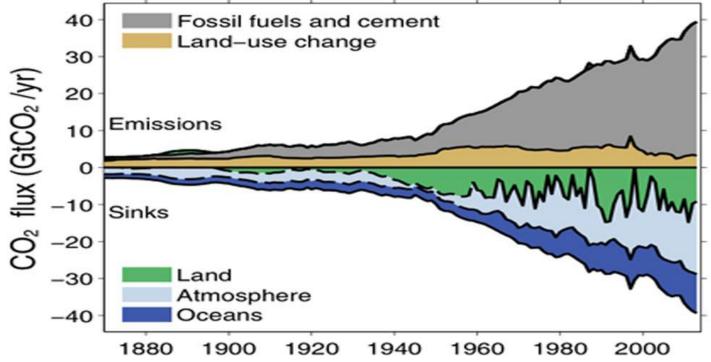

Paul Morin, Claire Porter (University of Minnesota)

Martin Brandt, Rasmus Fensholt, Kjeld Rasmussen, Amandine Montagu, Feg Tian, Morgane Dendoncker, Caroline Vincke, Cheikh Mbow (University of Copenhagen)

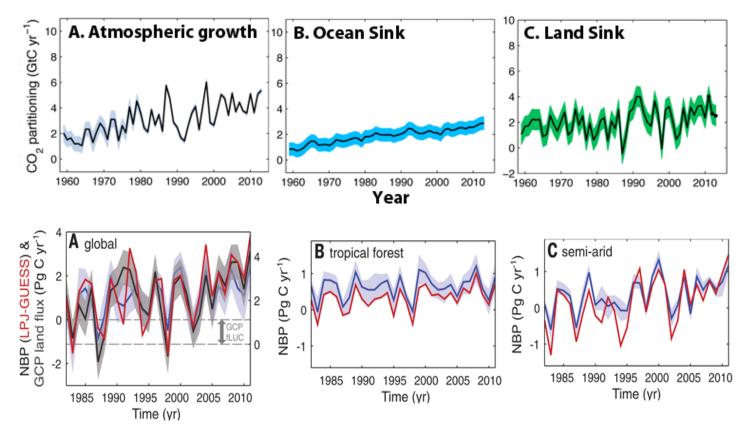

Atmospheric Composition Matters

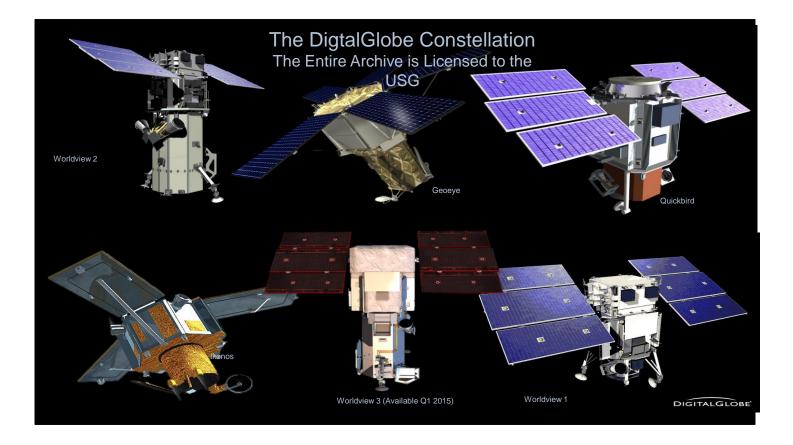

Flux: 6.78 x 10 ⁷	W/m ²			
Т	OA flux W/m²	2,815	1,462	632
Т	otal absorbed watts:	1.9 x 10 ¹⁷	1.3 x 10 ¹⁷	1.6 x 10 ¹⁶
Т	emp. no atmosphere (K):	294	260	210
Т	emp. no atmosphere (F):	64	1	-89
Α	Actual Mean Temp. (F):	860	62	-81

Climate & the Land Carbon Sink



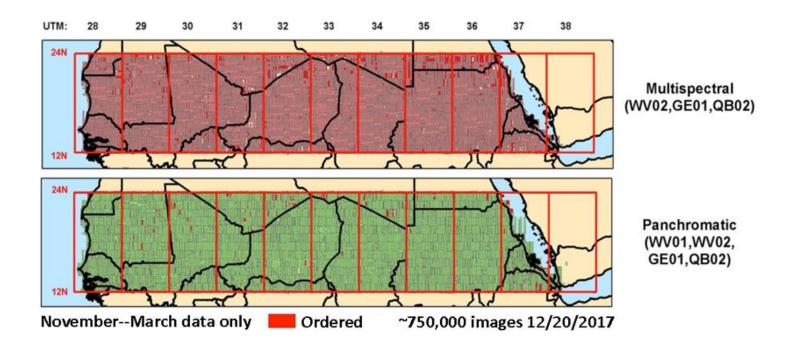
Climate & the Land Carbon Sink

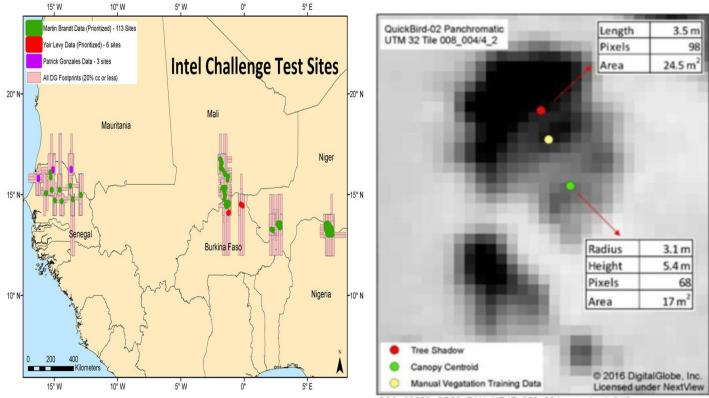


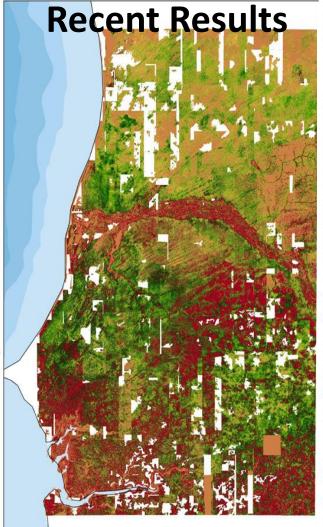

The Land Carbon Sink: Where is the carbon going on land?

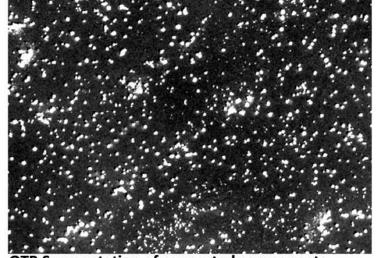
Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013/Khatiwala et al 2013

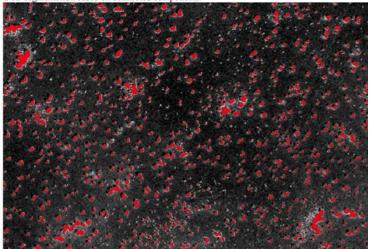
The Land Carbon Sink: Where is the carbon going on land?

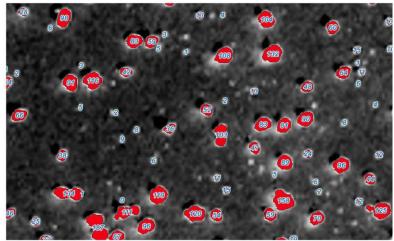


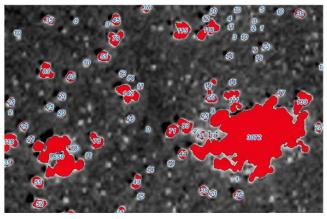

Sub-Saharan Africa

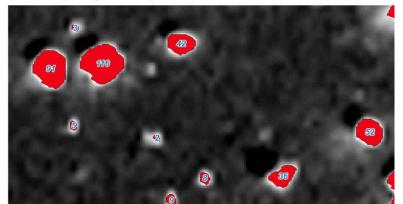

On-hand <1 m Commercial Satellite Imagery

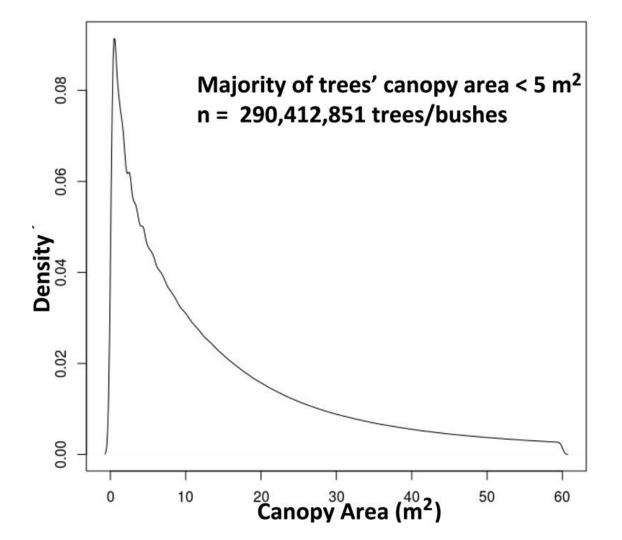

Sub-Saharan Arid/Semi-arid Calibration Sites


SSA_32632_QB02_PAN_NDJF_008_004_mosaic_4_2.tif

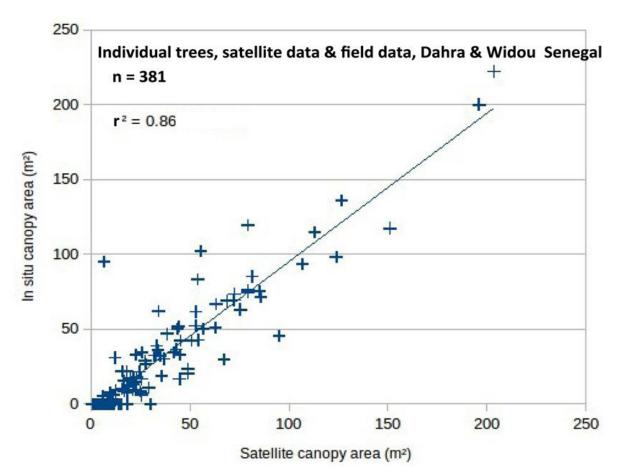

Pan-sharpened NDVI at 50 cm


OTB Segmentation of connected components

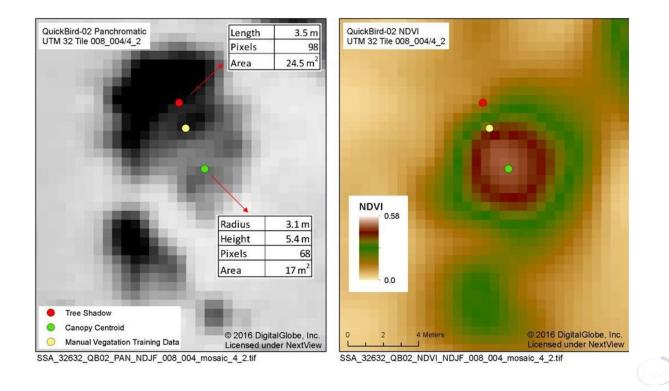

Recent results

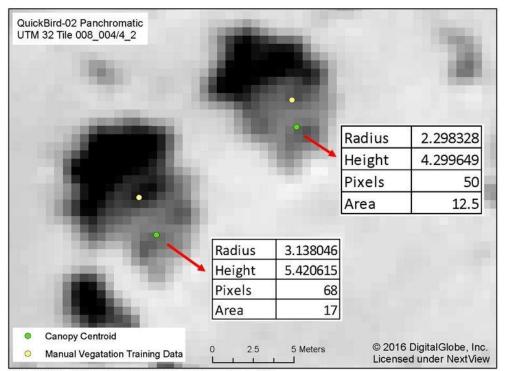


We map all green vegetation & calculate crown area in m²



Still a problem with clumped trees




Recent results

Tree & Bush Crown & Heights at 1 - 5 m

Tree & Bush Crown & Shadow Detection in QuickBird Data

SSA_32632_QB02_PAN_NDJF_008_004_mosaic_4_2.tif

Input Data Organization--Eliminate multiple counting

Ten UTM Zones (#28 to #37) from 12° N to 24° N 16 x 7 '100 km x 100 km' tiles per UTM zone = 112 tiles/UTM Zone Each 100 km x 100 km tile broken down into sixteen 25 km x 25 km sub-tiles 112 tiles/UTM Zone X 16 sub-tiles/tiles = 1,792 sub-tiles/UTM Zone Each 25 x 25 km sub-tile is a 2.5 x 10⁹ element array at 50 cm ~1.5 hours/25 km x 25 km sub-tile/virtual machine to form processing data 1.5 hr/sub-tile X 1,792 tiles/UTM Zone X 10 UTM Zones = 1,120 days or 3 years ~5,000 strips per UTM Zone = ~4-5 M km² of coverage/UTM Zone Each UTM Zone = ~1 M km² of area = ~10¹² pixels per UTM Zone

100 virtual machines = ~20 cpu days for data organization

Tree & Bush Data Processing Considerations

Processing details per UTM Zone from 12 degrees N to 24 degrees N:

- 16 x 7 '100 km x 100 km' tiles per UTM zone = 112 tiles/UTM Zone
- 1/16 of a 100 x 100 km tile = 1 sub-tile (25 km by 25 km)
- 7 hours dedicated computer processing time per sub-tile (25 km x 25 km)
- Each sub-tile is an array 50,000 x 50,000 elements at a pixel size of 50 cm

0.5 km by 0.5 km chunks or 1000 x 1000 array elements requires ~7 gb RAM (compute requires 4 gb RAM)

Tree & Bush Counting Considerations

Single Virtual Machine Niger test case for UTM Zone 32 from 12 degrees N to 24 degrees N:

- 112 tiles
- 112 x 16 = 1,792 sub-tiles
- Each sub-tile takes ~7 hours computation time to completion
- 1 UTM Zone takes 12,500 hours of compute time
- 12,500 compute hours = 520 compute days = 17.3 compute months

We have 10 UTM Zones:

- 10 UTM Zones x 17.3 compute months/UTM Zone = 14-15 years
- 15 years = 180 months compute time with 1 virtual machine
- 100 virtual machines--180 months/100 virtual machines = 1.8 months
- 200 virtual machines--180 months/200 virtual machines = 0.9 months