
Appendix A

HDF5 File Format Specification

Release 1.6.5
October 2005

Hierarchical Data Format (HDF) Group
National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign (UIUC)

The HDF Group (THG)
A not-for-profit corporation

Champaign, Illinois

(Printed: October 2005)

HDF5 File Format Specification

Copyright Notice and Statement for
NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005

by the Board of Trustees of the University of Illinois
All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (UIUC),
Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL),
Jean-loup Gailly and Mark Adler (gzip library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commercial
purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following

disclaimer in the documentation and/or materials provided with the distribution.
3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the

original code was changed and the date of the change.
4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to

acknowledge that it was developed by the National Center for Supercomputing Applications at the University of Illinois at
Urbana-Champaign and to credit the contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or promote products derived
from this software without specific prior written permission from the University or the Contributors, as appropriate for the
name(s) to be used.

6. THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS "AS IS" WITH NO
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Contributors
be liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of
such damage.

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC
LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source code,
binaries, documentation, and/or accompanying materials:

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL)
under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of the
University of California (University) for the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately- owned rights.
Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

Table of Contents

I. Introduction.. 1
II. Disk Format Level 0 – File Metadata 3

A. Disk Format Level 0A – File Signature and Super Block
B. Disk Format Level 0B – File Driver Info

II. Disk Format Level 1 – File Infrastructure..................... 9
A. Disk Format Level 1A – B-link Trees and B-tree Nodes
B. Disk Format Level 1B – Group
C. Disk Format Level 1C – Group Entry
D. Disk Format Level 1D – Local Heaps
E. Disk Format Level 1E – Global Heap
F. Disk Format Level 1F – Free-space Index

II. Disk Format Level 2 – Data Objects........................... 19
A. Disk Format Level 2a – Data Object Headers

1. Name: NIL
2. Name: Simple Dataspace
3. Name: Reserved – not yet assigned
4. Name: Datatype
5. Name: Data Storage – Fill Value (old)
6. Name: Data Storage – Fill Value
7. Name: Reserved – not yet assigned
8. Name: Data Storage – External Data Files
9. Name: Data Storage – Layout
10. Name: Reserved – not yet assigned
11. Name: Reserved – not yet assigned
12. Name: Data Storage – Filter Pipeline
13. Name: Attribute
14. Name: Object Comment
15. Name: Object Modification Date and Time (old)
16. Name: Shared Object Message
17. Name: Object Header Continuation
18. Name: Group Message
19. Name: Object Modification Date and Time

B. Disk Format Level 2b – Shared Data Object Headers
C. Disk Format Level 2c – Data Object Data Storage

Appendix... 63

1

 I. Introduction

Figure 1: Relationships among the
HDF5 root group, other groups, and

objects

Figure 2: HDF5 objects -- datasets,
datatypes, or dataspaces

The format of an HDF5 file on disk encompasses
several key ideas of the HDF4 and AIO file formats as well as
addressing some shortcomings therein. The new format is
more self-describing than the HDF4 format and is more
uniformly applied to data objects in the file.

An HDF5 file appears to the user as a directed graph.
The nodes of this graph are the higher-level HDF5 objects that
are exposed by the HDF5 APIs:

• Groups
• Datasets
• Named datatypes

At the lowest level, as information is actually written to
the disk, an HDF5 file is made up of the following objects:

• A super block
• B-tree nodes (containing either symbol nodes or raw

data chunks)
• Object headers
• A global heap
• Local heaps
• Free space

The HDF5 library uses these low-level objects to
represent the higher-level objects that are then presented to the
user or to applications through the APIs. For instance, a group
is an object header that contains a message that points to a
local heap and to a B-tree which points to symbol nodes. A
dataset is an object header that contains messages that
describe datatype, space, layout, filters, external files, fill
value, etc with the layout message pointing to either a raw
data chunk or to a B-tree that points to raw data chunks.

This Document

This document describes the lower-level data objects;
the higher-level objects and their properties are described in
the HDF5 User's Guide.

Three levels of information comprise the file format.
Level 0 contains basic information for identifying and
defining information about the file. Level 1 information
contains the information about the pieces of a file shared by

HDF5 File Format Specification

2

many objects in the file (such as a B-trees and heaps). Level 2 is the rest of the file and contains all of the
data objects, with each object partitioned into header information, also known as metadata, and data.

The sizes of various fields in the following layout tables are determined by looking at the number of
columns the field spans in the table. There are three exceptions: (1) The size may be overridden by
specifying a size in parentheses, (2) the size of addresses is determined by the Size of Offsets field in the
super block and is indicated in this document with a superscripted 'O', and (3) the size of length fields is
determined by the Size of Lengths field in the super block and is indicated in this document with a
superscripted 'L'.

Values for all fields in this document should be treated as unsigned integers, unless otherwise noted
in the description of a field. Additionally, all metadata fields are stored in little-endian byte order.

HDF 5 File Format Specification

3

 II. Disk Format: Level 0 - File Metadata
A. Disk Format: Level 0A - File Signature and Super Block

The super block may begin at certain predefined offsets within the HDF5 file, allowing a block of
unspecified content for users to place additional information at the beginning (and end) of the HDF5 file
without limiting the HDF5 library's ability to manage the objects within the file itself. This feature was
designed to accommodate wrapping an HDF5 file in another file format or adding descriptive information
to the file without requiring the modification of the actual file's information. The super block is located by
searching for the HDF5 file signature at byte offset 0, byte offset 512 and at successive locations in the file,
each a multiple of two of the previous location, i.e. 0, 512, 1024, 2048, etc.

The super block is composed of a file signature, followed by super block and group version numbers,
information about the sizes of offset and length values used to describe items within the file, the size of
each group page, and a group entry for the root object in the file.

HDF5 Super Block Layout
byte byte byte byte

HDF5 File Signature (8 bytes)

Version # of Super
Block

Version # of Global
Free-space Storage

Version # of Root
Group Symbol Table

Entry

Reserved
(zero)

Version # of Shared
Header Message Format Size of Offsets Size of Lengths Reserved

(zero)
Group Leaf Node K Group Internal Node K

File Consistency Flags
Indexed Storage Internal Node K1 Reserved (zero)1

Base AddressO

Address of Global Free-space HeapO

End of File AddressO

Driver Information Block AddressO

Root Group Symbol Table Entry
Items marked with a ‘O’ are of the size specified in “Size of Offsets.”

Items marked with a ‘1’ are new in version 1 of the superblock.

HDF5 File Format Specification

4

Field Name Description
HDF5 File
Signature

This field contains a constant value and can be used to quickly
identify a file as being an HDF5 file. The constant value is designed
to allow easy identification of an HDF5 file and to allow certain
types of data corruption to be detected. The file signature of an HDF5
file always contains the following values:

Decimal: 137 72 68 70 13 10 26 10

Hexadecimal: 89 48 44 46 0d 0a 1a 0a

ASCII C
Notation: \211 H D F \r \n \032 \n

This signature both identifies the file as an HDF5 file and
provides for immediate detection of common file-transfer problems.
The first two bytes distinguish HDF5 files on systems that expect the
first two bytes to identify the file type uniquely. The first byte is
chosen as a non-ASCII value to reduce the probability that a text file
may be misrecognized as an HDF5 file; also, it catches bad file
transfers that clear bit 7. Bytes two through four name the format.
The CR-LF sequence catches bad file transfers that alter newline
sequences. The control-Z character stops file display under MS-DOS.
The final line feed checks for the inverse of the CR-LF translation
problem. (This is a direct descendent of the PNG file signature.)

This field is present in version 0+ of the superblock.
Version
Number of the
Super Block

This value is used to determine the format of the information in
the super block. When the format of the information in the super
block is changed, the version number is incremented to the next
integer and can be used to determine how the information in the
super block is formatted.

Values of 0 and 1 are defined for this field.

This field is present in version 0+ of the superblock.
Version
Number of the
File Free-space
Information

This value is used to determine the format of the information in
the File Free-space Information.

The only value currently valid in this field is '0', which
indicates that the free space index is formatted as described below.

This field is present in version 0+ of the superblock.

HDF 5 File Format Specification

5

Version Number
of the Root
Group Symbol
Table Entry

This value is used to determine the format of the information
in the Root Group Symbol Table Entry. When the format of the
information in that field is changed, the version number is
incremented to the next integer and can be used to determine how
the information in the field is formatted.

The only value currently valid in this field is '0', which
indicates that the root group symbol table entry is formatted as
described below.

This field is present in version 0+ of the superblock.
Version Number
of the Shared
Header Message
Format

This value is used to determine the format of the information
in a shared object header message, which is stored in the global
small-data heap. Since the format of the shared header messages
differs from the private header messages, a version number is used
to identify changes in the format.

The only value currently valid in this field is '0', which
indicates that shared header messages are formatted as described
below.

This field is present in version 0+ of the superblock.
Size of Offsets This value contains the number of bytes used to store

addresses in the file. The values for the addresses of objects in the
file are offsets relative to a base address, usually the address of the
super block signature. This allows a wrapper to be added after the
file is created without invalidating the internal offset locations.

This field is present in version 0+ of the superblock.
Size of Lengths This value contains the number of bytes used to store the size

of an object.

This field is present in version 0+ of the superblock.
Group Leaf
Node K

Each leaf node of a group B-tree will have at least this many
entries but not more than twice this many. If a group has a single
leaf node then it may have fewer entries.

This value must be greater than zero.

See the description of B-trees below.

This field is present in version 0+ of the superblock.

HDF5 File Format Specification

6

Group Internal
Node K

Each internal node of a group B-tree will have at least this
many entries but not more than twice this many. If the group has
only one internal node then it might have fewer entries.

This value must be greater than zero.

See the description of B-trees below.

This field is present in version 0+ of the superblock.
File Consistency
Flags

This value contains flags to indicate information about the
consistency of the information contained within the file. Currently,
the following bit flags are defined:

• Bit 0 set indicates that the file is opened for write-access.
• Bit 1 set indicates that the file has been verified for

consistency and is guaranteed to be consistent with the
format defined in this document.

• Bits 2-31 are reserved for future use.

Bit 0 should be set as the first action when a file is opened for write
access and should be cleared only as the final action when closing
a file. Bit 1 should be cleared during normal access to a file and
only set after the file's consistency is guaranteed by the library or a
consistency utility.

This field is present in version 0+ of the superblock.
Indexed Storage
Internal Node K

Each internal node of a indexed storage B-tree will have at
least this many entries but not more than twice this many. If the
group has only one internal node then it might have fewer entries.

This value must be greater than zero.

See the description of B-trees below.

This field is present in version 1+ of the superblock.
Base Address This is the absolute file address of the first byte of the HDF5

data within the file. The library currently constrains this value to be
the absolute file address of the super block itself when creating
new files; future versions of the library may provide greater
flexibility. When opening an existing file and this address does not
match the offset of the superblock, the library assumes that the
entire contents of the HDF5 file have been adjusted in the file and
adjusts the base address and end of file address to reflect their new
positions in the file. Unless otherwise noted, all other file addresses
are relative to this base address.

This field is present in version 0+ of the superblock.

HDF 5 File Format Specification

7

Address of
Global Free-
space Index

Free-space management is not yet defined in the HDF5 file
format and is not handled by the library. Currently this field always
contains the undefined address.

This field is present in version 0+ of the superblock.
End of File
Address

This is the absolute file address of the first byte past the end
of all HDF5 data. It is used to determine whether a file has been
accidently truncated and as an address where file data allocation
can occur if space from the free list is not used.

This field is present in version 0+ of the superblock.
Driver
Information
Block Address

This is the relative file address of the file driver information
block which contains driver-specific information needed to reopen
the file. If there is no driver information block then this entry
should be the undefined address.

This field is present in version 0+ of the superblock.
Root Group
Symbol Table
Entry

This is the symbol table entry of the root group, which serves
as the entry point into the group graph for the file.

This field is present in version 0+ of the superblock.

HDF5 File Format Specification

8

B. Disk Format: Level 0B - File Driver Info

The file driver information block is an optional region of the file which contains information needed
by the file driver in order to reopen a file. The format of the file driver information block is:

Driver Information Block
byte byte byte byte

Version Reserved (zero)
Driver Information Size (4 bytes)

Driver Identification (8 bytes)

Driver Information (n bytes)

Field Name Description
Version The version number of the driver information block. The

file format documented here is version zero.
Driver Information Size The size in bytes of the Driver Information part of this

structure.
Driver Identification This is an eight-byte ASCII string without null termination

which identifies the driver and version number of the
Driver Information block. The predefined drivers supplied
with the HDF5 library are identified by the letters NCSA
followed by the first four characters of the driver name. If
the Driver Information block is not the original version then
the last letter(s) of the identification will be replaced by a
version number in ASCII.

For example, the various versions of the family driver will
be identified by NCSAfami, NCSAfam0, NCSAfam1, etc.
(NCSAfami is simply NCSAfamily truncated to eight
characters. Subsequent identifiers will be created by
substituting sequential numerical values for the final
character, starting with zero.)

Identification for user-defined drivers is arbitrary but
should be unique and avoid the four character prefix
"NCSA".

Driver Information Driver information is stored in a format defined by the file
driver and encoded/decoded by the driver callbacks invoked
from the H5FD_sb_encode and H5FD_sb_decode
functions.

HDF 5 File Format Specification

9

 III. Disk Format: Level 1 - File Infrastructure
A. Disk Format: Level 1A - B-link Trees and B-tree Nodes

B-link trees allow flexible storage for objects which tend to grow in ways that cause the object to be
stored discontiguously. B-trees are described in various algorithms books including "Introduction to
Algorithms" by Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. The B-link tree, in which
the sibling nodes at a particular level in the tree are stored in a doubly-linked list, is described in the
"Efficient Locking for Concurrent Operations on B-trees" paper by Phillip Lehman and S. Bing Yao as
published in the ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

The B-link trees implemented by the file format contain one more key than the number of children. In
other words, each child pointer out of a B-tree node has a left key and a right key. The pointers out of
internal nodes point to sub-trees while the pointers out of leaf nodes point to symbol nodes and raw data
chunks. Aside from that difference, internal nodes and leaf nodes are identical.

B-tree Nodes
byte byte byte byte

Signature
Node Type Node Level Entries Used

Address of Left SiblingO

Address of Right SiblingO

Key 0 (variable size)
Address of Child 0O

Key 1 (variable size)
Address of Child 1O

...
Key 2K (variable size)
Address of Child 2KO

Key 2K+1 (variable size)
Items marked with an ‘O’ are of the size specified in “Size of Offsets.”

Field Name Description
Signature The ASCII character string "TREE" is used to

indicate the beginning of a B-link tree node. This gives file
consistency checking utilities a better chance of
reconstructing a damaged file.

Node Type Each B-link tree points to a particular type of data.
This field indicates the type of data as well as implying the
maximum degree K of the tree and the size of each Key
field.

Node Type Description
0 This tree points to group nodes.
1 This tree points to raw data chunk

nodes.

HDF5 File Format Specification

10

Node Level The node level indicates the level at which this node appears in
the tree (leaf nodes are at level zero). Not only does the level indicate
whether child pointers point to sub-trees or to data, but it can also be
used to help file consistency checking utilities reconstruct damanged
trees.

Entries Used This determines the number of children to which this node
points. All nodes of a particular type of tree have the same maximum
degree, but most nodes will point to less than that number of children.
The valid child pointers and keys appear at the beginning of the node
and the unused pointers and keys appear at the end of the node. The
unused pointers and keys have undefined values.

Address of
Left Sibling

This is the relative file address of the left sibling of the current
node. If the current node is the left-most node at this level then this
field is the undefined address.

Address of
Right Sibling

This is the relative file address of the right sibling of the current
node. If the current node is the right-most node at this level then this
field is the undefined address.

Keys and
Child Pointers

Each tree has 2K+1 keys with 2K child pointers interleaved
between the keys. The number of keys and child pointers actually
containing valid values is determined by the node's Entries Used field.
If that field is N then the B-link tree contains N child pointers and N+1
keys.

Key The format and size of the key values is determined by the type
of data to which this tree points. The keys are ordered and are
boundaries for the contents of the child pointer; that is, the key values
represented by child N fall between Key N and Key N+1. Whether the
interval is open or closed on each end is determined by the type of
data to which the tree points.

The format of the key depends on the node type. For nodes of
node type 0 (group nodes), the key is formatted as follows:

A single field of
Size of Lengths
bytes:

Indicates the byte offset into the local heap for
the first object name in the subtree which that
key describes.

For nodes of node type 1 (chunked raw data nodes), the key is
formatted as follows:

Bytes 1-4: Size of chunk in bytes.
Bytes 4-8: Filter mask, a 32-bit bitfield indicating which

filters have been skipped for this chunk. Each
filter has an index number in the pipeline
(starting at 0, with the first filter to apply) and
if that filter is skipped, the bit corresponding to
it's index is set.

N 64-bit fields: A 64-bit index indicating the offset of the
chunk within the dataset where N is the number
of dimensions of the dataset. For example, if a
chunk in a 3-dimensional dataset begins at the
position [5,5,5], there will be three such 64-
bit indices, each with the value of 5.

HDF 5 File Format Specification

11

of dimensions of the dataset. For example, if a
chunk in a 3-dimensional dataset begins at the
position [5,5,5], there will be three such 64-
bit indices, each with the value of 5.

Child Pointer The tree node contains file addresses of subtrees or data
depending on the node level. Nodes at Level 0 point to data addresses,
either raw data chunk or group nodes. Nodes at non-zero levels point
to other nodes of the same B-tree.

For raw data chunk nodes, the child pointer is the address of a
single raw data chunk. For group nodes, the child pointer points to a
symbol table, which contains information for multiple symbol table
entries.

Conceptually, each B-tree node looks like this:

key[0] child[0] key[1] child[1] key[2] key[N-1] child[N-1] key[N]

where child[i] is a pointer to a sub-tree (at a level above Level 0) or to data (at Level 0). Each key[i]
describes an item stored by the B-tree (a chunk or an object of a group node). The range of values
represented by child[i] is indicated by key[i] and key[i+1].

The following question must next be answered: "Is the value described by key[i] contained in child[i-
1] or in child[i]?" The answer depends on the type of tree. In trees for groups (node type 0) the object
described by key[i] is the greatest object contained in child[i-1] while in chunk trees (node type 1) the
chunk described by key[i] is the least chunk in child[i].

That means that key[0] for group trees is sometimes unused; it points to offset zero in the heap, which
is always the empty string and compares as "less-than" any valid object name.

And key[N] for chunk trees is sometimes unused; it contains a chunk offset which compares as
"greater-than" any other chunk offset and has a chunk byte size of zero to indicate that it is not actually
allocated.

HDF5 File Format Specification

12

B. Disk Format: Level 1B - Group and Symbol Nodes

A group is an object internal to the file that allows arbitrary nesting of objects within the file
(including other groups). A group maps a set of names in the group to a set of relative file addresses where
objects with those names are located in the file. Certain metadata for an object to which the group points
can be cached in the group's symbol table in addition to the object's header.

An HDF5 object name space can be stored hierarchically by partitioning the name into components
and storing each component in a group. The group entry for a non-ultimate component points to the group
containing the next component. The group entry for the last component points to the object being named.

A group is a collection of group nodes pointed to by a B-link tree. Each group node contains entries
for one or more symbols. If an attempt is made to add a symbol to an already full group node containing 2K
entries, then the node is split and one node contains K symbols and the other contains K+1 symbols.

Group Node (A Leaf of a B-tree)
byte byte byte byte

Signature
Version Number Reserved (0) Number of Symbols

Group Entries

Field Name Description
Signature The ASCII character string "SNOD" is used to

indicate the beginning of a group node. This gives file
consistency checking utilities a better chance of
reconstructing a damaged file.

Version Number The version number for the group node. This
document describes version 1. (There is no version '0' of the
group node)

Number of Symbols Although all group nodes have the same length, most
contain fewer than the maximum possible number of
symbol entries. This field indicates how many entries
contain valid data. The valid entries are packed at the
beginning of the group node while the remaining entries
contain undefined values.

Group Entries Each symbol has an entry in the group node. The
format of the entry is described below. There are 2K entries
in each group node, where K is the "Group Leaf Node K"
value from the super block.

HDF 5 File Format Specification

13

C. Disk Format: Level 1C - Group Entry

Each group entry in a group node is designed to allow for very fast browsing of stored objects.
Toward that design goal, the group entries include space for caching certain constant metadata from the
object header.

Group Entry
byte byte byte byte

Name OffsetO

Object Header AddressO

Cache Type
Reserved

Scratch-pad Space (16 bytes)

Items marked with an ‘O’ are of the size specified in “Size of Offsets.”

Field Name Description
Name Offset This is the byte offset into the group local heap for

the name of the object. The name is null terminated.
Object Header Address Every object has an object header which serves as a

permanent location for the object's metadata. In addition to
appearing in the object header, some metadata can be
cached in the scratch-pad space.

Cache Type The cache type is determined from the object header.
It also determines the format for the scratch-pad space:

Type: Description:
0 No data is cached by the group entry. This is

guaranteed to be the case when an object header
has a link count greater than one.

1 Object header metadata is cached in the group
entry. This implies that the group entry refers to
another group.

2 The entry is a symbolic link. The first four bytes of
the scratch-pad space are the offset into the local
heap for the link value. The object header address
will be undefined.

N Other cache values can be defined later and
libraries that do not understand the new values will
still work properly.

Reserved These four bytes are present so that the scratch-pad
space is aligned on an eight-byte boundary. They are
always set to zero.

HDF5 File Format Specification

14

Scratch-pad
Space

This space is used for different purposes, depending on the value
of the Cache Type field. Any metadata about a dataset object
represented in the scratch-pad space is duplicated in the object header
for that dataset. This metadata can include the datatype and the size of
the dataspace for a dataset whose datatype is atomic and whose
dataspace is fixed and less than four dimensions.

Furthermore, no data is cached in the group entry scratch-pad
space if the object header for the group entry has a link count greater
than one.

Format of the Scratch-pad Space

The group entry scratch-pad space is formatted according to the value in the Cache Type field.

If the Cache Type field contains the value zero (0) then no information is stored in the scratch-pad
space.

If the Cache Type field contains the value one (1), then the scratch-pad space contains cached
metadata for another object header in the following format:

Object Header Scratch-pad Format
byte byte byte byte

Address of B-treeO

Address of Name HeapO

(Items marked with an 'O' the above table are
of the size specified in "Size of Offsets.")

Field Name Description
Address of B-tree This is the file address for the root of the group's B-

tree.
Address of Name Heap This is the file address for the group's local heap, in

which are stored the group's symbol names.

If the Cache Type field contains the value two (2), then the scratch-pad space contains cached
metadata for another symbolic link in the following format:

Symbolic Link Scratch-pad Format
byte byte byte byte

Offset to Link Value

Field Name Description
Offset to Link Value The value of a symbolic link (that is, the name of the

thing to which it points) is stored in the local heap. This
field is the 4-byte offset into the local heap for the start of
the link value, which is null terminated.

HDF 5 File Format Specification

15

D. Disk Format: Level 1D - Local Heaps

A heap is a collection of small heap objects. Objects can be inserted and removed from the heap at
any time. The address of a heap does not change once the heap is created. References to objects are stored
in the group table; the names of those objects are stored in the local heap.

Local Heap
byte byte byte byte

Signature
Version Reserved (zero)

Data Segment SizeL

Offset to Head of Free-listL

Address of Data SegmentO

Items marked with an ‘O’ are of the size specified in “Size of Offsets.”
Items marked with an ‘L’ are of the size specified in “Size of Lengths.”

Field Name Description
Signature The ASCII character string "HEAP" is used to

indicate the beginning of a heap. This gives file consistency
checking utilities a better chance of reconstructing a
damaged file.

Version Each local heap has its own version number so that
new heaps can be added to old files. This document
describes version zero (0) of the local heap.

Data Segment Size The total amount of disk memory allocated for the
heap data. This may be larger than the amount of space
required by the objects stored in the heap. The extra unused
space in the heap holds a linked list of free blocks.

Offset to Head of Free-
list

This is the offset within the heap data segment of the
first free block (or the undefined address if there is no free
block). The free block contains "Size of Lengths" bytes that
are the offset of the next free block (or the value '1' if this is
the last free block) followed by "Size of Lengths" bytes that
store the size of this free block. The size of the free block
includes the space used to store the offset of the next free
block and the of the current block, making the minimum
size of a free block 2 * "Size of Lengths".

Address of Data Segment The data segment originally starts immediately after
the heap header, but if the data segment must grow as a
result of adding more objects, then the data segment may be
relocated, in its entirety, to another part of the file.

Objects within the heap should be aligned on an 8-byte boundary.

HDF5 File Format Specification

16

E. Disk Format: Level 1E - Global Heap

Each HDF5 file has a global heap which stores various types of information which is typically shared
between datasets. The global heap was designed to satisfy these goals:

A. Repeated access to a heap object must be efficient without resulting in repeated file I/O requests.
Since global heap objects will typically be shared among several datasets, it is probable that the
object will be accessed repeatedly.

B. Collections of related global heap objects should result in fewer and larger I/O requests. For
instance, a dataset of object references will have a global heap object for each reference. Reading
the entire set of object references should result in a few large I/O requests instead of one small I/O
request for each reference.

C. It should be possible to remove objects from the global heap and the resulting file hole should be
eligible to be reclaimed for other uses.

The implementation of the heap makes use of the memory management already available at the file
level and combines that with a new top-level object called a collection to achieve Goal B. The global heap
is the set of all collections. Each global heap object belongs to exactly one collection and each collection
contains one or more global heap objects. For the purposes of disk I/O and caching, a collection is treated
as an atomic object.

The HDF5 library creates global heap collections as needed, so there may be multiple collections
throughout the file. The set of all of them is abstractly called the "global heap", although they don't actually
link to each other, and there is no global place in the file where you can discover all of the collections. The
collections are found simply by finding a reference to one through another object in the file (eg. variable-
length datatype elements, etc).

A Global Heap Collection
byte byte byte byte

Signature
Version Reserved (zero)

Collection SizeL

Global Heap Object 1

Global Heap Object 2

...

Global Heap Object N

Global Heap Object 0 (free space)

Items marked with an ‘L’ are of the size specified in “Size of Lengths.”

Field Name Description

HDF 5 File Format Specification

17

Signature The ASCII character string "GCOL" is used to
indicate the beginning of a collection. This gives file
consistency checking utilities a better chance of
reconstructing a damaged file.

Version Each collection has its own version number so that
new collections can be added to old files. This document
describes version one (1) of the collections (there is no
version zero (0)).

Collection Size This is the size in bytes of the entire collection
including this field. The default (and minimum) collection
size is 4096 bytes which is a typical file system block size.
This allows for 127 16-byte heap objects plus their
overhead (the collection header of 16 bytes and the 16 bytes
of information about each heap object).

Global Heap Object 1
through N

The objects are stored in any order with no
intervening unused space.

Global Heap Object 0 Global Heap Object 0 (zero), when present,
represents the free space in the collection. Free space
always appears at the end of the collection. If the free space
is too small to store the header for Object 0 (described
below) then the header is implied and the collection
contains no free space.

Global Heap Object
byte byte byte byte

Heap Object ID Reference Count
Reserved

Object SizeL

Object Data

Items marked with an ‘L’ are of the size specified in “Size of Lengths."

Field Name Description
Heap Object ID Each object has a unique identification number within

a collection. The identification numbers are chosen so that
new objects have the smallest value possible with the
exception that the identifier 0 always refers to the object
which represents all free space within the collection.

Reference Count All heap objects have a reference count field. An
object which is referenced from some other part of the file
will have a positive reference count. The reference count
for Object 0 is always zero.

Reserved Zero padding to align next field on an 8-byte
boundary.

Object Size This is the size of the object data stored for the object.
The actual storage space allocated for the object data is
rounded up to a multiple of eight.

Object Data The object data is treated as a one-dimensional array
of bytes to be interpreted by the caller.

HDF5 File Format Specification

18

F. Disk Format: Level 1F - Free-space Index

The free-space index is a collection of blocks of data, dispersed throughout the file, which are
currently not used by any file objects.

The super block contains a pointer to root of the free-space description; that pointer is currently
required to be the undefined address.

The format of the free-space index is not defined at this time.

HDF 5 File Format Specification

19

 IV. Disk Format: Level 2 - Data Objects
Data objects contain the real information in the file. These objects compose the scientific data and

other information which are generally thought of as "data" by the end-user. All the other information in the
file is provided as a framework for these data objects.

A data object is composed of header information and data information. The header information
contains the information needed to interpret the data information for the data object as well as additional
"metadata" or pointers to additional "metadata" used to describe or annotate each data object.

A. Disk Format: Level 2A - Data Object Headers

The header information of an object is designed to encompass all the information about an object,
except for the data itself. This information includes the dataspace, datatype, information about how the data
is stored on disk (in external files, compressed, broken up in blocks, etc.), as well as other information used
by the library to speed up access to the data objects or maintain a file's integrity. Information stored by user
applications as attributes is also stored in the object's header. The header of each object is not necessarily
located immediately prior to the object's data in the file and in fact may be located in any position in the
file. The order of the messages in an object header is not significant.

Header messages are aligned on 8-byte boundaries.

Object Headers
byte byte byte byte

Version Reserved (zero) Number of Header Messages
Object Reference Count

Object Header Size
Header Message Type #1 Size of Header Message Data #1

Header Message #1 Flags Reserved (zero)

Header Message Data #1

.

.

.
Header Message Type #n Size of Header Message Data #n

Header Message #n Flags Reserved (zero)

Header Message Data #n

HDF5 File Format Specification

20

Field Name Description
Version This value is used to determine the format of the

information in the object header. When the format of the
information in the object header is changed, the version
number is incremented and can be used to determine how
the information in the object header is formatted. This
document describes version one (1) (there was no version
zero (0)).

Number of Header
Messages

This value determines the number of messages listed
in object headers for this object. This value includes the
messages in continuation messages for this object.

Object Reference Count This value specifies the number of "hard links" to this
object within the current file. References to the object from
external files, "soft links" in this file and object references
in this file are not tracked.

Object Header Size This value specifies the number of bytes of header
message data following this length field that contain object
header messages for this object header. This value does not
include the size of object header continuation blocks for
this object elsewhere in the file.

Header Message Type This value specifies the type of information included
in the following header message data. The header message
types for the pre-defined header messages are included in
sections below.

Size of Header Message
Data

This value specifies the number of bytes of header
message data following the header message type and length
information for the current message. The size includes
padding bytes to make the message a multiple of eight
bytes.

Header Message Flags This is a bit field with the following definition:

Bit Description
0 If set, the message data is constant. This

is used for messages like the datatype
message of a dataset.

1 If set, the message is stored in the
global heap. The Header Message Data
field contains a Shared Object message
and the Size of Header Message Data
field contains the size of that Shared
Object message.

2-7 Reserved
Header Message Data The format and length of this field is determined by

the header message type and size respectively. Some header
message types do not require any data and this information
can be eliminated by setting the length of the message to
zero. The data is padded with enough zeros to make the size
a multiple of eight.

HDF 5 File Format Specification

21

The header message types and the message data associated with them compose the critical
"metadata" about each object. Some header messages are required for each object while others are optional.
Some optional header messages may also be repeated several times in the header itself, the requirements
and number of times allowed in the header will be noted in each header message description below.

The following is a list of currently defined header messages:

HDF5 File Format Specification

22

1. Name: NIL

Header Message Type: 0x0000

Length: varies

Status: Optional, may be repeated.

Purpose and Description: The NIL message is used to indicate a message which is to be ignored when
reading the header messages for a data object. [Possibly one which has been deleted for some
reason.]

Format of Data: Unspecified.

HDF 5 File Format Specification

23

2. Name: Simple Dataspace

Header Message Type: 0x0001

Length: Varies according to the number of dimensions, as described in the following table.

Status: Required for dataset objects, may not be repeated.

Description: The simple dataspace message describes the number of dimensions (i.e. "rank") and size of
each dimension that the data object has. This message is only used for datasets which have a simple,
rectilinear grid layout; datasets requiring a more complex layout (irregularly structured or
unstructured grids, etc.) must use the Complex Dataspace message for expressing the space the
dataset inhabits. (Note: The Complex Dataspace functionality is not yet implemented and it is not
described in this document.)

Format of Data:

Simple Dataspace Message
byte byte byte byte

Version Dimensionality Flags Reserved
Reserved

Dimension #1 SizeL

.

.

.
Dimension #n SizeL

Dimension #1 Maximum SizeL

.

.

.
Dimension #n Maximum SizeL

Permutation Index #1L

.

.

.
Permutation Index #nL

Items marked with an ‘L’ are of the size specified in “Size of Lengths.”

HDF5 File Format Specification

24

Field Name Description
Version This value is used to determine the format of the

Simple Dataspace Message. When the format of the
information in the message is changed, the version number
is incremented and can be used to determine how the
information in the object header is formatted. This
document describes version one (1) (there was no version
zero (0)).

Dimensionality This value is the number of dimensions that the data
object has.

Flags This field is used to store flags to indicate the
presence of parts of this message. Bit 0 (the least significant
bit) is used to indicate that maximum dimensions are
present. Bit 1 is used to indicate that permutation indices
are present.

Dimension #n Size This value is the current size of the dimension of the
data as stored in the file. The first dimension stored in the
list of dimensions is the slowest changing dimension and
the last dimension stored is the fastest changing dimension.

Dimension #n Maximum
Size

This value is the maximum size of the dimension of
the data as stored in the file. This value may be the special
"unlimited" size which indicates that the data may expand
along this dimension indefinitely. If these values are not
stored, the maximum size of each dimension is assumed to
be the dimension's current size.

Permutation Index #n This value is the index permutation used to map each
dimension from the canonical representation to an alternate
axis for each dimension. If these values are not stored, the
first dimension stored in the list of dimensions is the
slowest changing dimension and the last dimension stored
is the fastest changing dimension.

HDF 5 File Format Specification

25

3. Name: Reserved - Not Assigned Yet

Header Message Type: 0x0002
Length: N/A
Status: N/A
Format of Data: N/A

Purpose and Description: This message type was skipped during the initial specification of the file
format and may be used in a future expansion to the format.

HDF5 File Format Specification

26

4. Name: Datatype

Header Message Type: 0x0003

Length: variable

Status: Required for dataset or named datatype objects, may not be repeated.

Description: The datatype message defines the datatype for each element of a dataset. A datatype can
describe an atomic type like a fixed- or floating-point type or a compound type like a C struct.
Datatypes messages are stored as a list of datatype classes and their associated properties.

Datatype messages that are part of a dataset object, do not describe how elements are related to
one another, the dataspace message is used for that purpose. Datatype messages that are part of a
named datatype message describe an "abstract" datatype that can be used by other objects in the file.

Format of Data:

Datatype Message
byte byte byte byte

Class and Version Class Bit Field, Bits
0-7

Class Bit Field, Bits
8-15

Class Bit Field, Bits
16-23

Size

Properties

Field Name Description
Class and Version The version of the datatype message and the

datatype's class information are packed together in this
field. The version number is packed in the top 4 bits of the
field and the class is contained in the bottom 4 bits.

The version number information is used for changes
in the format of the datatype message and is described here:

Version Description
0 Never used

1

Used by early versions of the library to
encode compound datatypes with
explicit array fields. See the compound
datatype description below for further
details.

2 The current version used by the library.

HDF 5 File Format Specification

27

The class of the datatype determines the format for
the class bit field and properties portion of the datatype
message, which are described below. The following classes
are currently defined:

Value Description
0 Fixed-Point
1 Floating-Point
2 Time
3 String
4 Bitfield
5 Opaque
6 Compound
7 Reference
8 Enumerated
9 Variable-Length
10 Array

Class Bit Fields The information in these bit fields is specific to each
datatype class and is described below. All bits not defined
for a datatype class are set to zero.

Size The size of the datatype in bytes.
Properties This variable-sized field encodes information specific

to each datatype class and is described below. If there is no
property information specified for a datatype class, the size
of this field is zero.

Class specific information for Fixed-Point Numbers (Class 0):

Bit Field Description
Bits Meaning
0 Byte Order. If zero, byte order is little-endian; otherwise, byte order is big

endian.
1, 2 Padding type. Bit 1 is the lo_pad type and bit 2 is the hi_pad type. If a

datum has unused bits at either end, then the lo_pad or hi_pad bit is copied to
those locations.

3 Signed. If this bit is set then the fixed-point number is in 2's complement
form.

4-23 Reserved (zero).

HDF5 File Format Specification

28

Property Descriptions
Byte Byte Byte Byte

Bit Offset Bit Precision

Field Name Description
Bit Offset The bit offset of the first significant bit of the fixed-

point value within the datatype. The bit offset specifies the
number of bits "to the right of" the value.

Bit Precision The number of bits of precision of the fixed-point
value within the datatype.

Class specific information for Floating-Point Numbers (Class 1):

Bit Field Description
Bits Meaning
0 Byte Order. If zero, byte order is little-endian; otherwise, byte order is big

endian.
1, 2, 3 Padding type. Bit 1 is the low bits pad type, bit 2 is the high bits pad type,

and bit 3 is the internal bits pad type. If a datum has unused bits at either end
or between the sign bit, exponent, or mantissa, then the value of bit 1, 2, or 3
is copied to those locations.

4-5 Normalization. The value can be 0 if there is no normalization, 1 if the most
significant bit of the mantissa is always set (except for 0.0), and 2 if the most
signficant bit of the mantissa is not stored but is implied to be set. The value
3 is reserved and will not appear in this field.

6-7 Reserved (zero).
8-15 Sign Location. This is the bit position of the sign bit. Bits are numbered with

the least significant bit zero.
16-23 Reserved (zero).

HDF 5 File Format Specification

29

Property Descriptions
Byte Byte Byte Byte

Bit Offset Bit Precision
Exponent Location Exponent Size Mantissa Location Mantissa Size

Exponent Bias

Field Name Description
Bit Offset The bit offset of the first significant bit of the

floating-point value within the datatype. The bit offset
specifies the number of bits "to the right of" the value.

Bit Precision The number of bits of precision of the floating-point
value within the datatype.

Exponent Location The bit position of the exponent field. Bits are
numbered with the least significant bit number zero.

Exponent Size The size of the exponent field in bits.
Mantissa Location The bit position of the mantissa field. Bits are

numbered with the least significant bit number zero.
Mantissa Size The size of the mantissa field in bits.
Exponent Bias The bias of the exponent field.

Class specific information for Time (Class 2):

Bit Field Description
Bits Meaning
0 Byte Order. If zero, byte order is little-endian; otherwise, byte order is big

endian.
1-23 Reserved (zero).

HDF5 File Format Specification

30

Property Descriptions
Byte Byte

Bit Precision

Field Name Description
Bit Precision The number of bits of precision of the time value.

Class specific information for Strings (Class 3):

Bit Field Description
Bits Meaning
0-3 Padding type. This four-bit value determines the type of padding to use for

the string. The values are:
Value Description
0 Null Terminate: A zero byte marks the end of the

string and is guaranteed to be present after
converting a long string to a short string. When
converting a short string to a long string the value is
padded with additional null characters as necessary.

1 Null Pad: Null characters are added to the end of the
value during conversions from short values to long
values but conversion in the opposite direction
simply truncates the value.

2 Space Pad: Space characters are added to the end of
the value during conversions from short values to
long values but conversion in the opposite direction
simply truncates the value. This is the Fortran
representation of the string.

3-15 Reserved
4-7 Character Set. The character set to use for encoding the string. The only

character set supported is the 8-bit ASCII (zero) so no translations have been
defined yet.

8-23 Reserved (zero).

There are no properties defined for the string class.

Class specific information for Bitfields (Class 4):

Bit Field Description
Bits Meaning
0 Byte Order. If zero, byte order is little-endian; otherwise, byte order is big

endian.
1, 2 Padding type. Bit 1 is the lo_pad type and bit 2 is the hi_pad type. If a

datum has unused bits at either end, then the lo_pad or hi_pad bit is copied to
those locations.

3-23 Reserved (zero).

HDF 5 File Format Specification

31

Property Description
Byte Byte Byte Byte

Bit Offset Bit Precision

Field Name Description
Bit Offset The bit offset of the first significant bit of the bitfield

within the datatype. The bit offset specifies the number of
bits "to the right of" the value.

Bit Precision The number of bits of precision of the bitfield within
the datatype.

Class specific information for Opaque (Class 5):

Bit Field Description
Bits Meaning
0-7 Length of ASCII tag in bytes.
8-23 Reserved (zero).

Property Description
Byte Byte Byte Byte

ASCII Tag

Field Name Description
ASCII Tag This NUL-terminated string provides a description for

the opaque type. It is NUL-padded to a multiple of 8 bytes.

Class specific information for Compound (Class 6):

Bit Field Description
Bits Meaning
0-15 Number of Members. This field contains the number of members defined

for the compound datatype. The member definitions are listed in the
Properties field of the data type message.

15-23 Reserved (zero).

The Properties field of a compound datatype is a list of the member definitions of the compound
datatype. The member definitions appear one after another with no intervening bytes. The member types
are described with a recursive datatype message.

Note that the property descriptions are different for different versions of the datatype version.
Additionally note that the version 0 properties are deprecated and have been replaced with the version 1
properties in versions of the HDF5 library from the 1.4 release onward.

HDF5 File Format Specification

32

Properties Description for Datatype Version 1
Byte Byte Byte Byte

Name

Byte Offset of Member
Dimensionality Reserved (zero)

Dimension Permutation
Reserved (zero)

Dimension #1 Size (required)
Dimension #2 Size (required)
Dimension #3 Size (required)
Dimension #4 Size (required)

Member Type Message

Field Name Description
Name This NUL-terminated string provides a description for

the opaque type. It is NUL-padded to a multiple of 8 bytes.
Byte Offset of Member This is the byte offset of the member within the

datatype.
Dimensionality If set to zero, this field indicates a scalar member. If

set to a value greater than zero, this field indicates that the
member is an array of values. For array members, the size
of the array is indicated by the 'Size of Dimension n' field in
this message.

Dimension Permutation This field was intended to allow an array field to have
it's dimensions permuted, but this was never implemented.
This field should always be set to zero.

Dimension #n Size This field is the size of a dimension of the array field
as stored in the file. The first dimension stored in the list of
dimensions is the slowest changing dimension and the last
dimension stored is the fastest changing dimension.

Member Type Message This field is a datatype message describing the
datatype of the member.

HDF 5 File Format Specification

33

Properties Description for Datatype Version 2
Byte Byte Byte Byte

Name

Byte Offset of Member

Member Type Message

Field Name Description

Name This NUL-terminated string provides a description for
the opaque type. It is NUL-padded to a multiple of 8 bytes.

Byte Offset of Member This is the byte offset of the member within the
datatype.

Member Type Message This field is a datatype message describing the
datatype of the member.

Class specific information for Reference (Class 7):

Bit Field Description
Bits Meaning
0-3 Type. This four-bit value contains the type of reference described. The

values defined are:
Value Description
0 Object Reference: A reference to another object in

this HDF5 file.
1 Dataset Region Reference: A reference to a region

within a dataset in this HDF5 file.
2 Internal Reference: A reference to a region within

the current dataset. (Not currently implemented)
3-15 Reserved

15-23 Reserved (zero).

There are no properties defined for the reference class.

Class specific information for Enumeration (Class 8):

Bit Field Description
Bits Meaning
0-15 Number of Members. The number of name/value pairs defined for the

enumeration type.
16-23 Reserved (zero).

HDF5 File Format Specification

34

Property Description
Byte Byte Byte Byte

Base Type

Names

Values

Field Name Description

Base Type
Each enumeration type is based on some parent type,

usually an integer. The information for that parent type is
described recursively by this field.

Names
The name for each name/value pair. Each name is

stored as a null terminated ASCII string in a multiple of
eight bytes. The names are in no particular order.

Values
The list of values in the same order as the names. The

values are packed (no inter-value padding) and the size of
each value is determined by the parent type.

HDF 5 File Format Specification

35

Class specific information for Variable-Length (Class 9):

Bit Field Description
Bits Meaning
0-3 Type. This four-bit value contains the type of variable-length datatype

described. The values defined are:
Value Description
0 Sequence: A variable-length sequence of any

sequence of data. Variable-length sequences do not
have padding or character set information.

1 String: A variable-length sequence of characters.
Variable-length strings have padding and character
set information.

2-15 Reserved
4-7 Padding type. (variable-length string only) This four-bit value determines

the type of padding used for variable-length strings. The values are the same
as for the string padding type, as follows:

Value Description
0 Null terminate: A zero byte marks the end of a

string and is guaranteed to be present after
converting a long string to a short string. When
converting a short string to a long string, the value
is padded with additional null characters as
necessary.

1 Null pad: Null characters are added to the end of the
value during conversion from a short string to a
longer string. Conversion from a long string to a
shorter string simply truncates the value.

2 Space pad: Space characters are added to the end of
the value during conversion from a short string to a
longer string. Conversion from a long string to a
shorter string simply truncates the value. This is the
Fortran representation of the string.

3-15 Reserved
This value is set to zero for variable-length sequences.

8-11 Character Set. (variable-length string only) This four-bit value specifies the
character set to be used for encoding the string:

Value Description
0 ASCII: As of this writing (July 2003, Release

1.6.0), 8-bit ASCII is the only character set
supported. Therefore, no translations have been
defined.

1-15 Reserved
This value is set to zero for variable-length sequences.

12-23 Reserved (zero).

HDF5 File Format Specification

36

Property Description
Byte Byte Byte Byte

Base Type

Field Name Description
Base Type Each variable-length type is based on some parent

type. The information for that parent type is described
recursively by this field.

Class specific information for Array (Class 10):

There are no bit fields defined for the array class.

Note that the dimension information defined in the property for this datatype class is independent of
dataspace information for a dataset. The dimension information here describes the dimensionality of the
information within a data element (or a component of an element, if the array datatype is nested within
another datatype) and the dataspace for a dataset describes the location of the elements in a dataset.

HDF 5 File Format Specification

37

Property Description
Byte Byte Byte Byte

Dimensionality Reserved (zero)
Dimension #1 Size

.

.

.
Dimension #n Size

Permutation Index #1
.
.
.

Permutation Index #n

Base Type

Field Name Description
Dimensionality This value is the number of dimensions that the array

has.
Dimension #n Size This value is the size of the dimension of the array as

stored in the file. The first dimension stored in the list of
dimensions is the slowest changing dimension and the last
dimension stored is the fastest changing dimension.

Permutation Index #n This value is the index permutation used to map each
dimension from the canonical representation to an alternate
axis for each dimension. Currently, dimension permutations
are not supported and these indices should be set to the
index position minus one (i.e. the first dimension should be
set to 0, the second dimension should be set to 1, etc.)

Base Type Each array type is based on some parent type. The
information for that parent type is described recursively by
this field.

HDF5 File Format Specification

38

5. Name: Data Storage - Fill Value (Old)

Header Message Type: 0x0004

Length: varies

Status: Optional, may not be repeated.

Description: The fill value message stores a single data value which is returned to the application when an
uninitialized data element is read from a dataset. The fill value is interpreted with the same datatype
as the dataset. If no fill value message is present then a fill value of all zero bytes is assumed.

This fill value message is deprecated in favor of the "new" fill value message (Message Type
0x0005) and is only written to the file for forward compatibility with versions of the HDF5 library
before the 1.6.0 version. Additionally, it only appears for datasets with a user defined fill value (as
opposed to the library default fill value or an explicitly set "undefined" fill value).

Format of Data:

Fill Value Message (Old)
byte byte byte byte

Size

Fill Value

Field Name Description
Size This is the size of the Fill Value field in bytes.
Fill Value The fill value. The bytes of the fill value are

interpreted using the same datatype as for the dataset.

HDF 5 File Format Specification

39

6. Name: Data Storage - Fill Value

Header Message Type: 0x0005

Length: varies

Status: Required for dataset objects, may not be repeated.

Description: The fill value message stores a single data value which is returned to the application when an
uninitialized data element is read from a dataset. The fill value is interpreted with the same datatype
as the dataset.

Format of Data:

Fill Value Message
byte byte byte byte

Version Space Allocation
Time

Fill Value Write
Time Fill Value Defined

Size

Fill Value

Field Name Description
Version The version number information is used for changes

in the format of the fill value message and is described
here:

Version Description
0 Never used

1
Used by version 1.6.x of the library to
encode fill values. In this version, the
Size field is always present.

2

The current version used by the library
(version 1.7.3 or later). In this version,
the Size and Fill Value fields are only
present if the Fill Value Defined field is
set to 1.

Space Allocation Time When the storage space for the dataset's raw data will
be allocated. The allowed values are:

Value Description
1 Early allocation. Storage space for the

entire dataset should be allocated in the
file when the dataset is created.

2 Late allocation. Storage space for the
entire dataset should not be allocated
until the dataset is written to.

3 Incremental allocation. Storage space
for the dataset should not be allocated
until the portion of the dataset is written
to. This is currently used in conjunction
with chunked data storage for datasets.

HDF5 File Format Specification

40

for the dataset should not be allocated
until the portion of the dataset is written
to. This is currently used in conjunction
with chunked data storage for datasets.

Fill Value Write Time At the time that storage space for the dataset's raw
data is allocated, this value indicates whether the fill value
should be written to the raw data storage elements. The
allowed values are:

Value Description
0 On allocation. The fill value is always

written to the raw data storage when the
storage space is allocated.

1 Never. The fill value should never be
written to the raw data storage.

2 Fill value written if set by user. The fill
value will be written to the raw data
storage when the storage space is
allocated only if the user explicitly set
the fill value. If the fill value is the
library default or is undefined, it will
not be written to the raw data storage.

Fill Value Defined This value indicates if a fill value is defined for this
dataset. If this value is 0, the fill value is undefined. If this
value is 1, a fill value is defined for this dataset. For version
2 or later of the fill value message, this value controls the
presence of the Size field.

Size This is the size of the Fill Value field in bytes. This
field is not present if the Version field is >1 and the Fill
Value Defined field is set to 0.

Fill Value The fill value. The bytes of the fill value are
interpreted using the same datatype as for the dataset. This
field is not present if the Version field is >1 and the Fill
Value Defined field is set to 0.

HDF 5 File Format Specification

41

7. Name: Reserved - Not Assigned Yet

Header Message Type: 0x0006
Length: N/A
Status: N/A
Format of Data: N/A

Purpose and Description: This message type was skipped during the initial specification of the file
format and may be used in a future expansion to the format.

HDF5 File Format Specification

42

8. Name: Data Storage - External Data Files

Header Message Type: 0x0007
Length: varies
Status: Optional, may not be repeated.

Purpose and Description: The external object message indicates that the data for an object is stored
outside the HDF5 file. The filename of the object is stored as a Universal Resource Location (URL) of the
actual filename containing the data. An external file list record also contains the byte offset of the start of
the data within the file and the amount of space reserved in the file for that data.

External File List Message

byte byte byte byte

Version Reserved

Allocated Slots Used Slots

Heap Address

Slot Definitions...

Field Name Description
Version This value is used to determine the format of the External

File List Message. When the format of the information in
the message is changed, the version number is incremented
and can be used to determine how the information in the
object header is formatted.

Reserved This field is reserved for future use.
Allocated Slots The total number of slots allocated in the message. Its value

must be at least as large as the value contained in the Used
Slots field.

Used Slots The number of initial slots which contain valid information.
The remaining slots are zero filled.

Heap Address This is the address of a local name heap which contains the
names for the external files. The name at offset zero in the
heap is always the empty string.

Slot Definitions The slot definitions are stored in order according to the
array addresses they represent. If more slots have been
allocated than what has been used then the defined slots are
all at the beginning of the list.

HDF 5 File Format Specification

43

External File List Slot

byte byte byte byte

Name Offset (<size> bytes)

File Offset (<size> bytes)

Size

Field Name Description
Name Offset (<size>
bytes)

The byte offset within the local name heap for the name of
the file. File names are stored as a URL which has a
protocol name, a host name, a port number, and a file name:
protocol:port//host/file. If the protocol is
omitted then "file:" is assumed. If the port number is
omitted then a default port for that protocol is used. If both
the protocol and the port number are omitted then the colon
can also be omitted. If the double slash and host name are
omitted then "localhost" is assumed. The file name is the
only mandatory part, and if the leading slash is missing then
it is relative to the application's current working directory
(the use of relative names is not recommended).

File Offset (<size>
bytes)

This is the byte offset to the start of the data in the specified
file. For files that contain data for a single dataset this will
usually be zero.

Size This is the total number of bytes reserved in the specified
file for raw data storage. For a file that contains exactly one
complete dataset which is not extendable, the size will
usually be the exact size of the dataset. However, by
making the size larger one allows HDF5 to extend the
dataset. The size can be set to a value larger than the entire
file since HDF5 will read zeros past the end of the file
without failing.

HDF5 File Format Specification

44

9. Name: Data Storage - Layout

Header Message Type: 0x0008
Length: varies
Status: Required for datasets, may not be repeated.

Purpose and Description: Data layout describes how the elements of a multi-dimensional array are
arranged in the linear address space of the file. Three types of data layout are supported:

1. The array can be stored in one contiguous area of the file. The layout requires that the size of the
array be constant and does not permit chunking, compression, checksums, encryption, etc. The
message stores the total size of the array and the offset of an element from the beginning of the
storage area is computed as in C.

2. The array domain can be regularly decomposed into chunks and each chunk is allocated
separately. This layout supports arbitrary element traversals, compression, encryption, and
checksums, and the chunks can be distributed across external raw data files (these features are
described in other messages). The message stores the size of a chunk instead of the size of the
entire array; the size of the entire array can be calculated by traversing the B-tree that stores the
chunk addresses.

3. The array can be stored in one contiguous block, as part of this object header message (this is
called "compact" storage below).

Version 3 of this message re-structured the format into specific properties that are required for each
layout class.

HDF 5 File Format Specification

45

Data Layout Message, Versions 1 and 2

byte byte byte byte

Version Dimensionality Layout Class Reserved

Reserved

Address

Dimension 0 (4-bytes)

Dimension 1 (4-bytes)

...

Compact Data Size (4-bytes)

Compact Data

...

Field Name Description
Version A version number for the layout message. This value can be

either 1 or 2.
Dimensionality An array has a fixed dimensionality. This field specifies the

number of dimension size fields later in the message.
Layout Class The layout class specifies how the other fields of the layout

message are to be interpreted. A value of one indicates
contiguous storage, a value of two indicates chunked
storage, while a value of zero indicates compact storage.
Other values will be defined in the future.

Address For contiguous storage, this is the address of the first byte
of storage. For chunked storage this is the address of the B-
tree that is used to look up the addresses of the chunks. This
field is not present for compact storage. If the version for
this message is set to 2, the address may have the
"undefined address" value, to indicate that storage has not
yet been allocated for this array.

Dimensions For contiguous storage the dimensions define the entire size
of the array while for chunked storage they define the size
of a single chunk.

Compact Data Size This field is only present for compact data storage. It
contains the size of the raw data for the dataset array.

Compact Data This field is only present for compact data storage. It
contains the raw data for the dataset array.

HDF5 File Format Specification

46

Data Layout Message, Version 3

byte byte byte byte

Version Layout Class

Properties

Field Name Description
Version A version number for the layout message. This value can be

either 1, 2 or 3.
Layout Class The layout class specifies how the other fields of the layout

message are to be interpreted. A value of one indicates
contiguous storage, a value of two indicates chunked
storage, while a value of three indicates compact storage.

Properties This variable-sized field encodes information specific to
each layout class and is described below. If there is no
property information specified for a layout class, the size of
this field is zero bytes.

Class-specific information for contiguous layout (Class 0):

HDF 5 File Format Specification

47

Property Descriptions

byte byte byte byte

Address

Size

Field Name Description
Address This is the address of the first byte of raw data storage. The

address may have the "undefined address" value, to indicate
that storage has not yet been allocated for this array.

Size This field contains the size allocated to store the raw data.

Class-specific information for chunked layout (Class 1):

Property Descriptions

byte byte byte byte

Dimensionality

Address

Dimension 0 (4-bytes)

Dimension 1 (4-bytes)

...

Field Name Description
Dimensionality A chunk has a fixed dimensionality. This field specifies the

number of dimension size fields later in the message.
Address This is the address of the B-tree that is used to look up the

addresses of the chunks. The address may have the
"undefined address" value, to indicate that storage has not
yet been allocated for this array.

Dimensions The dimension sizes define the size of a single chunk.

HDF5 File Format Specification

48

Class-specific information for compact layout (Class 2):

Property Descriptions

byte byte byte byte

Size

Raw Data

...

Field Name Description
Size This field contains the size of the raw data for the dataset

array.
Raw Data This field contains the raw data for the dataset array.

HDF 5 File Format Specification

49

10. Name: Reserved - Not Assigned Yet

Header Message Type: 0x0009
Length: N/A
Status: N/A
Format of Data: N/A

Purpose and Description: This message type was skipped during the initial specification of the file
format and may be used in a future expansion to the format.

11. Name: Reserved - Not Assigned Yet

Header Message Type: 0x000A
Length: N/A
Status: N/A
Format of Data: N/A

Purpose and Description: This message type was skipped during the initial specification of the file
format and may be used in a future expansion to the format.

HDF5 File Format Specification

50

12. Name: Data Storage - Filter Pipeline

Header Message Type: 0x000B
Length: varies
Status: Optional, may not be repeated.

Purpose and Description: This message describes the filter pipeline which should be applied to the
data stream by providing filter identification numbers, flags, a name, an client data.

Filter Pipeline Message

byte byte byte byte

Version Number of Filters Reserved

Reserved

Filter List

Field Name Description
Version The version number for this message. This document

describes version one.
Number of Filters The total number of filters described by this message. The

maximum possible number of filters in a message is 32.
Filter List A description of each filter. A filter description appears in

the next table.

HDF 5 File Format Specification

51

Filter Pipeline Message

byte byte byte byte

Filter Identification Name Length

Flags Client Data Number of Values

Name

Client Data

Padding
Field Name Description
Filter Identification This is a unique (except in the case of testing) identifier for

the filter. Values from zero through 255 are reserved for
filters defined by the NCSA HDF5 library. Values 256
through 511 have been set aside for use when
developing/testing new filters. The remaining values are
allocated to specific filters by contacting the HDF5
Development Team.

Name Length Each filter has an optional null-terminated ASCII name and
this field holds the length of the name including the null
termination padded with nulls to be a multiple of eight. If
the filter has no name then a value of zero is stored in this
field.

Flags The flags indicate certain properties for a filter. The bit
values defined so far are:
bit 1

If set then the filter is an optional filter. During
output, if an optional filter fails it will be silently
removed from the pipeline.

Client Data Number of
Values

Each filter can store a few integer values to control how the
filter operates. The number of entries in the Client Data
array is stored in this field.

Name If the Name Length field is non-zero then it will contain the
size of this field, a multiple of eight. This field contains a
null-terminated, ASCII character string to serve as a
comment/name for the filter.

Client Data This is an array of four-byte integers which will be passed
to the filter function. The Client Data Number of Values
determines the number of elements in the array.

Padding Four bytes of zeros are added to the message at this point if
the Client Data Number of Values field contains an odd
number.

HDF5 File Format Specification

52

13. Name: Attribute

Header Message Type: 0x000C
Length: varies
Status: Optional, may be repeated.

Purpose and Description: The Attribute message is used to list objects in the HDF file which are
used as attributes, or "metadata" about the current object. An attribute is a small dataset; it has a name, a
datatype, a data space, and raw data. Since attributes are stored in the object header they must be relatively
small (

Note: Attributes on an object must have unique names. (The HDF5 library currently enforces this by
causing the creation of an attribute with a duplicate name to fail) Attributes on different objects may have
the same name, however.

Attribute Message

byte byte byte byte

Version Reserved Name Size

Type Size Space Size

Name

Type

Space

Data

Field Name Description
Version Version number for the message. This document describes

version 1 of attribute messages.
Reserved This field is reserved for later use and is set to zero.
Name Size The length of the attribute name in bytes including the null

terminator. Note that the Name field below may contain
additional padding not represented by this field.

Type Size The length of the datatype description in the Type field
below. Note that the Type field may contain additional
padding not represented by this field.

Space Size The length of the dataspace description in the Space field
below. Note that the Space field may contain additional
padding not represented by this field.

HDF 5 File Format Specification

53

Name The null-terminated attribute name. This field is padded with additional null
characters to make it a multiple of eight bytes.

Type The datatype description follows the same format as described for the datatype
object header message. This field is padded with additional zero bytes to make
it a multiple of eight bytes.

Space The dataspace description follows the same format as described for the
dataspace object header message. This field is padded with additional zero
bytes to make it a multiple of eight bytes.

Data The raw data for the attribute. The size is determined from the datatype and
dataspace descriptions. This field is not padded with additional zero bytes.

HDF5 File Format Specification

54

14. Name: Object Comment

Header Message Type: 0x000D
Length: varies
Status: Optional, may not be repeated.

Purpose and Description: The object comment is designed to be a short description of an object. An
object comment is a sequence of non-zero (\0) ASCII characters with no other formatting included by the
library.

Name Message

byte byte byte byte

Comment

Field Name Description
Name A null terminated ASCII character string.

HDF 5 File Format Specification

55

15. Name: Object Modification Date & Time (Old)

Header Message Type: 0x000E
Length: fixed
Status: Optional, may not be repeated.

Purpose and Description: The object modification date and time is a timestamp which indicates
(using ISO-8601 date and time format) the last modification of an object. The time is updated when any
object header message changes according to the system clock where the change was posted.

This modification time message is deprecated in favor of the "new" modification time message
(Message Type 0x0012) and is no longer written to the file in versions of the HDF5 library after the 1.6.0
version.

Modification Time Message

byte byte byte byte

Year

Month Day of Month

Hour Minute

Second Reserved

Field Name Description
Year The four-digit year as an ASCII string. For example, 1998.

All fields of this message should be interpreted as
coordinated universal time (UTC)

Month The month number as a two digit ASCII string where
January is 01 and December is 12.

Day of Month The day number within the month as a two digit ASCII
string. The first day of the month is 01.

Hour The hour of the day as a two digit ASCII string where
midnight is 00 and 11:00pm is 23.

Minute The minute of the hour as a two digit ASCII string where
the first minute of the hour is 00 and the last is 59.

Second The second of the minute as a two digit ASCII string where
the first second of the minute is 00 and the last is 59.

Reserved This field is reserved and should always be zero.

HDF5 File Format Specification

56

16. Name: Shared Object Message

Header Message Type: 0x000F
Length: 4 Bytes
Status: Optional, may be repeated.

A constant message can be shared among several object headers by writing that message in the global
heap and having the object headers all point to it. The pointing is accomplished with a Shared Object
message which is understood directly by the object header layer of the library. It is also possible to have a
message of one object header point to a message in some other object header, but care must be exercised to
prevent cycles.

If a message is shared, then the message appears in the global heap and its message ID appears in the
Header Message Type field of the object header. Also, the Flags field in the object header for that message
will have bit two set (the H5O_FLAG_SHARED bit). The message body in the object header will be that of
a Shared Object message defined here and not that of the pointed-to message.

Shared Message Message

byte byte byte byte

Version Flags Reserved

Reserved

Pointer

Field Name Description
Version The version number for the message. This document

describes version one of shared messages.
Flags The Shared Message message points to a message which is

shared among multiple object headers. The Flags field
describes the type of sharing:
Bit 0 If this bit is clear then the actual message is the first

message in some other object header;
otherwise the actual message is stored in the
global heap.

Bits 2-7 Reserved (always zero)
Pointer This field points to the actual message. The format of the

pointer depends on the value of the Flags field. If the actual
message is in the global heap then the pointer is the file
address of the global heap collection that holds the
message, and a four-byte index into that collection.
Otherwise the pointer is a group entry that points to some
other object header.

HDF 5 File Format Specification

57

17. Name: Object Header Continuation

Header Message Type: 0x0010
Length: fixed
Status: Optional, may be repeated.
Purpose and Description: The object header continuation is the location in the file of more header
messages for the current data object. This can be used when header blocks are large, or likely to change
over time.
Format of Data:

The object header continuation is formatted as follows (assuming a 4-byte length & offset are being
used in the current file):

byte byte byte byte

Header Continuation Offset

Header Continuation Length

HDF5 Object Header Continuation Message Layout
The elements of the Header Continuation Message are described below:

Header Continuation Offset: (<offset> bytes)
This value is the offset in bytes from the beginning of the file where the header continuation
information is located.
Header Continuation Length: (<length> bytes)
This value is the length in bytes of the header continuation information in the file.

HDF5 File Format Specification

58

18. Name: Group Message

Header Message Type: 0x0011
Length: fixed
Status: Required for groups, may not be repeated.
Purpose and Description: Each group has a B-tree and a name heap which are pointed to by this message.
Format of data:

The group message is formatted as follows:

byte byte byte byte

B-tree Address

Heap Address

HDF5 Object Header Group Message Layout
The elements of the Group Message are described below:

B-tree Address (<offset> bytes)
This value is the offset in bytes from the beginning of the file where the B-tree is located.
Heap Address (<offset> bytes)
This value is the offset in bytes from the beginning of the file where the group name heap is
located.

HDF 5 File Format Specification

59

19. Name: Object Modification Date & Time

Header Message Type: 0x0012

Length: Fixed

Status: Optional, may not be repeated.

Description: The object modification date and time is a timestamp which indicates the last modification of
an object. The time is updated when any object header message changes according to the system
clock where the change was posted.

Modification Time Message

byte byte byte byte

Version Reserved

Seconds After Epoch

Field Name Description
Version The version number for the message. This document

describes version one of the new modification time
message.

Reserved This field is reserved and should always be zero.
Seconds After Epoch The number of seconds since 0 hours, 0 minutes, 0

seconds, January 1, 1970, Coordinated Universal Time.

HDF5 File Format Specification

60

B. Disk Format: Level 2b - Shared Data Object Headers

In order to share header messages between several dataset objects, object header messages may be
placed into the global heap. Since these messages require additional information beyond the basic object
header message information, the format of the shared message is detailed below.

byte byte byte byte

Reference Count of Shared Header Message

Shared Object Header Message

HDF5 Shared Object Header Message
The elements of the shared object header message are described below:

Reference Count of Shared Header Message: (32-bit unsigned integer)
This value is used to keep a count of the number of dataset objects which refer to this message
from their dataset headers. When this count reaches zero, the shared message header may be
removed from the global heap.
Shared Object Header Message: (various lengths)
The data stored for the shared object header message is formatted in the same way as the private
object header messages described in the object header description earlier in this document and
begins with the header message Type.

HDF 5 File Format Specification

61

C. Disk Format: Level 2c - Data Object Data Storage

The data for an object is stored separately from the header information in the file and may not
actually be located in the HDF5 file itself if the header indicates that the data is stored externally. The
information for each record in the object is stored according to the dimensionality of the object (indicated
in the dimensionality header message). Multi-dimensional data is stored in C order [same as current
scheme], i.e. the "last" dimension changes fastest.

Data whose elements are composed of simple number-types are stored in native-endian IEEE format,
unless they are specifically defined as being stored in a different machine format with the architecture-type
information from the number-type header message. This means that each architecture will need to
[potentially] byte-swap data values into the internal representation for that particular machine.

Data with a variable-length datatype is stored in the global heap of the HDF5 file. Global heap
identifiers are stored in the data object storage.

Data whose elements are composed of pointer number-types are stored in several different ways
depending on the particular pointer type involved. Simple pointers are just stored as the dataset offset of the
object being pointed to with the size of the pointer being the same number of bytes as offsets in the file.
Dataset region references are stored as a heap-ID which points to the following information within the file-
heap: an offset of the object pointed to, number-type information (same format as header message),
dimensionality information (same format as header message), sub-set start and end information (i.e. a
coordinate location for each), and field start and end names (i.e. a [pointer to the] string indicating the first
field included and a [pointer to the] string name for the last field).

Data of a compound datatype is stored as a contiguous stream of the items in the structure, with each
item formatted according to its datatype.

HDF 5 File Format Specification

63

Appendix
Definitions of various terms used in this document.

The "undefined address" for a file is a file address with all bits set, i.e. 0xffff...ff.

The "unlimited size" for a size is a value with all bits set, i.e. 0xffff...ff.

This document describes HDF5 Release 1.6.5, a production branch,
and Release 1.7, the unreleased development branch, working toward HDF5 Release 1.8.0

