

EARTHDATA

Discover and Access NASA's Near Real-Time Global Flood Products

9/17/2025

Dan Slayback^{1,2}

Research Scientist

Flood Team: Diane Davies^{1,2}, Sadashiva Devadiga¹, Asen Radov^{1,3},

Ranjay Shrestha^{1,2}, Tian Yao^{1,2}
¹NASA Goddard Space Flight Center

²Science Systems & Applications, Inc.

³University of Maryland, College Park

Pakistan flooding 5 - 18 Sept 2014

Buenos Aires

VIIRS flood product examples

Talk Outline

- Product overview
- Brief history
- Approach
- Recent Updates
- Evaluation
- Limitations
- Distribution
- Archive
- Future directions

A Brief History

2005: Bob Brakenridge (Dartmouth Flood Observatory) developed method to manually generate flood maps from MODIS rapid response imagery. Generally effective, but:

- Not automated!
- Used rapid response jpegs not intended for data analysis.

2010: NASA GSFC's Office of Applied Science initiated a project to automate production.

- Using LANCE*-generated NRT surface reflectance.
- Automated global flood map production began 2012.
 - 223 10x10° tiles x 3 products (2-day, 3-day, 14-day).
 - Typically available within 6 hours of Aqua overpass (~ 8:00 PM local time).
- PI managed code and server resources.
- Operational 2011-2022. Now referred to as "legacy" product.

2021: Product fully transitioned to LANCE production.

- · Completely recoded.
- Much more robust, minimal latency (< 3 hours).

2025: VIIRS product launched.

Identical in approach to MODIS, but using VIIRS on NOAA-20 and NOAA-21

LANCE: Land Atmosphere Near real-time Capability for Earth observation

- Goal: to provide near real-time (NRT) data products within 3 hours of observations to meet the timely needs of applications users including disasters
- Provides timely data from 8 instruments within 3 hours of satellite overpass (except ICESat-2)
- NRT Imagery is available from GIBS and Worldview
- AIRS Atmospheric Infrared Sounder
- ICESat-2 Advanced Topographic Altimeter System (ATLAS) on the Ice, Cloud, and land Elevation satellite
- MLS Microwave Limb Sounder
- MODIS Moderate Resolution Imaging Spectroradiometer
- OMI Ozone Monitoring Instrument
- OMPS Ozone Mapping and Profiler Suite
- SMAP Soil Moisture Active Passive
- VIIRS-Atmosphere and VIIRS-Land Visible Infrared Imaging Radiometer Suite

Overview: four basic steps

Step 1: Water Detection

MODIS product source imagery:

MODerate resolution Imaging Spectroradiometer

Key features:

- On board two NASA polar-orbiting satellites:
 - Terra: 1999 present (ending ~ 2026)
 - Aqua: 2002 present (ending ~2026)
- 250 m resolution
- Global
- 2 x Daily
 - Terra: ~10:30 AM local time
 - Aqua: ~1:30 PM local time
- Optical (cannot see through cloud)

MODIS / Terra (10:30 am) Daily Collect: 6/18/2025

MODIS / Aqua (1:30 pm) Daily Collect: 6/18/2025

Step 1: Water Detection

VIIRS product source imagery: Visible Infrared Imaging Radiometer Suite

Key features:

- On board two NOAA polar-orbiting satellites:
 - NOAA-20: 2017 present
 - NOAA-21: 2022 present
- 375 m resolution
- Global
- 2 x Daily
 - NOAA-20: ~1:30 PM local time
 - NOAA-21: ~2:20 PM local time
- Optical (cannot see through cloud)

Differences from MODIS:

- 375 m resolution, vs 250
- Only afternoon overpasses (within 40 minutes) vs 10:30 am / 1:30 pm
- No equatorial swath gaps!

VIIRS / NOAA-20 (1:30 pm) Daily Collect: 6/18/2025

VIIRS / NOAA-21 (2:20 pm) Daily Collect: 6/18/2025

Step 1: Water Detection

Water detection algorithm:

3 conditions must be met:

$$\frac{(NearIR + A)}{(Red + B)} < C$$
AND $Red < D$
AND $SWIR < E$

Α	13.5	
В	1081	
С	0.7	
D	2027	
E	676	
	-	

Band / Band #	Wavelengths (nm)	
(MODIS, VIIRS)	MODIS	VIIRS
Red (1, i1)	620-670	600-680
Near-IR (2, i2)	841-876	850-880
SWIR (7, m11)	2105-2155	2230-2280

Thresholds in units of scaled reflectance (0-10000)

Developed by Bob Brakenridge, Dartmouth Flood Observatory

(11/1/2011, False-color)

- 1. Sum water detections from all available observations, over the composite period (1, 2, or 3 days).
- 2. If SUM >= THRESHOLD: mark pixel as water
 The threshold is generally equal to the compositing period:
 - 1-day composite: 1
 - 2-day composite: 2

3-day composite: 3

(modified depending on the actual

2-day composite example

MODIS/Terra 10:30 AM

MODIS/Aqua 1:30 PM

Apply terrain and topographic masks to remove likely false-positive water detections

1. Monthly computed terrain shadow masks.

MODIS/Terra February, 10:30 AM

MODIS/Aqua February, 1:30 PM

2. General topographic mask HAND: Height Above Nearest Drainage

HAND identifies areas unlikely to retain flood water, given 250 m resolution pixels

Flood identification

- Compare detected water to reference water layer (=expected water).
 - MOD44W land-water mask provides reference water.
- 2. Water not matching:
- 3. Water matching:

→FLOOD

→ SURFACE WATER

Detail: False-positive masking

Shadows look like water \rightarrow false positives!

Shadow is very difficult to discriminate from real water in red and near-infrared wavelengths

Terrain shadows

- In mountainous areas, mostly in winter
- First cut: apply computed terrain shadow masks (good but not perfect)
- Second cut: apply HAND topographic mask (masks areas where water should not be able to accumulate due to significant relief)

Cloud shadows

- Multi-look compositing eliminates most
- But: shadows can occasionally recur in the same location, leading to false-positives in 2 and (much less frequently) 3-day products
- → Reviewing source imagery is critical to understanding potential cloud contamination!

Detail: Multi-look compositing

- 1. Sum water detections from all available observations, over 3 composite periods: 1 day, 2 days, and 3 days.
- 2. If SUM >= THRESHOLD: mark pixel as water
 - The threshold is generally equal to the compositing period: 1 for 1-day, 2 for 2-day, and 3 for 3-day.

 This is modified depending on the actual number of observations due to swath overlaps at higher latitudes.
- 2-day **standard product**: requires 2+ water observations over 2 days of imagery (generally 4 observations).
- 3-day product: requires 3+ observations over 3 days. Minimal false-positives. Potentially less up-to-date.
- 1-day product: requires JUST 1 observation over 1 day.
 - Most current, but WILL probably contain cloud-shadow false-positives IF cloud is present.

Which product to use? Depends on cloud conditions, and:

- Tolerance for false positives (and false negatives).
- Need for only the most up-to-date information.
- Clear conditions? (Can verify visually in Worldview app: https://worldview.earthdata.nasa.gov/) → Use 1-day.
- Very sensitive to false-positives and/or currency is not critical? → Use 3-day.
- Need the latest info? → Use 1-day, but CHECK CLOUDS!
- Best approach? Review visible imagery for date/area of interest in conjunction with all products.

1-Day Composite

Baselayer background

- Lots of flood
- Appears to follow linear-ish features (suggesting rivers): ✓

1-Day Composite

MODIS/Terra image background

- Still looks reasonable.
- Minimal cloud; no obvious cloud issues: ✓

1-Day Composite

MODIS/Aqua image background

- !! Flood in cloud shadow !!
- Some flood appears reasonable

2-Day Composite

MODIS/Aqua image background

 Most (all?) cloud shadow false-positives have disappeared

For 2-day composite, 4 images should be reviewed:

Terra: Current day

Aqua: Current day

Terra: Previous day

Aqua: Previous day

Similarly for VIIRS: NOAA-20/NOAA-21 in place of Terra and Aqua

3-Day Composite

MODIS/Terra image background

- All cloud shadow falsepositives have disappeared!
- But much real flood has also disappeared!

→ 2 days ago, area was entirely cloudy, so few pixels meet 3day water-detection threshold

16 Sept 2024 Terra: CLOUDY

Recent Updates:

+ Updated Permanent Reference Water

- Originally used static MOD44W ("land water mask" product), circa 2009, to identify expected permanent water.
- Now use updated yearly MOD44W
 - Accounts for new reservoirs, changes in river courses, other permanent water changes
 - Release 1 (April 2024)

+ Identification of "recurring flood"

- NEW Feature! Releasing ~Sept 2025
- Monthly recurring flood masks based on 22 year product history (2003-2024)
- Helps discriminate regularly occurring seasonal flood from unusual flooding

Recurring flood: N California example January 2023

Recurring flood:

Mississippi – Ohio example April January 2025

Recurring flood: Indus/Punjab river system Sept 2025

→ Mostly *not* recurring, but unusual flooding

Validation / Evaluation

Purpose:

- Is water detection algorithm correctly detecting water that is visibly obvious?
- Are certain events or situations problematic?
- Do we see differences between detection of flood vs normal water?

Caveat:

 No rigorous ground-truth dataset: ground truth is difficult to find, expensive to collect, and biased towards accessible locations

Method:

- Manual qualitative assessment, using MODIS or Landsat imagery to inform.
- 50 events selected from DFO master list of recent floods.
 - Global distribution.
 - Including areas with high and low cloud cover (humid tropics to arid regions).
 - Varying landcovers.
- + 50 permanent water sites for evaluation of surface water detection.
- Conducted for legacy product in 2014.

Flood Detection Ratings

RATING	Count	%
Good or better	23	66
Fair or poor	12	34
Total Assessable	35	100
Too cloudy	17	33
TOTAL EVENTS	53	

Permanent Water Ratings

Count	% Clear
31	85
6	16
37	100
16	30
53	
	31 6 37

Correct water & flood ID

Bosnia and Herzegovina: 23 May 2014

Base map

Landsat 8 Pre-flood October 19, 2013

Landsat 8 Flood May 22, 2014

MODIS NRT product May 22, 2014

Correct water & flood ID

Kentucky: 04 Jan 2014

Base map

MODIS Pre-Flood Oct 12, 2013

MODIS Flood Jan 4, 2014

MODIS NRT Product Jan 4, 2013

Dark volcanic rock false-positives

- Volcanic masks for a few locations.
- For Mauna Loa, HAND mask largely solved this problem.

Mauna Loa, **Hawaii:** 17 Dec 2013

Landsat 8

MODIS (MCD12Q1) IGBP Land Cover

MODIS IGBP Land Cover with flood water

MODIS Flood Product

Product limitations recap

- Cloudiness
 - False-negatives: can't see the flood
 - False-positives: cloud shadows detected as water
- 250 m resolution
 - Floods with limited spatial extent are difficult to pick up
- Twice Daily Observations (within 1-3 hours of each other)
 - Flash floods usually not captured, unless lucky with overpass timing
- Landcover limitations
 - Water under tree cover will not be visible to satellite
 - Urban too many buildings/objects not under water
- Recent changes in normal surface water extent
 - New reservoirs (will be picked up by reference water layer after filled for 3 years)
 - Changes in river courses
 - ** Users can easily reclassify the product using a custom surface water map, if available

Data Access: File download

- Main product: 1 HDF file / tile / day:
 - Flood layers (1, 2, 3-day composites)
 - Ancillary layers with: Water Counts, Valid Counts, and Total Counts. Allow users to create custom composites, or examine underlying data.
- GeoTIFF files for each flood layer
- Distributed in 10 x 10 degree tiles
 - 287 tiles globally in production
 - Full tile map on homepage, and in User Guide
- Flood layer data values:

Pixel value	
0	No water detected (potentially clear)
1	Surface water detected
2	Recurring flood detected (coming soon)
3	Flood detected
255	Insufficient data

Data Access: File download

- https://nrt3.modaps.eosdis.nasa.gov (and nrt4)
- Free NASA EarthData account required
- MODIS product shortname: MCDWD
- VIIRS product shortname: VCDWD
- Navigate: "Browse NRT Data" → allData → <COLLECTION>
 → <PRODUCT> → Year → DOY (day-of-year)
- <COLLECTION> = 61 for MCDWD, 5200 for VCDWD
- For HDF files: <PRODUCT> = shortname + "_L3_NRT"
 Eg: MCDWD_L3_NRT or VCDWD_L3_NRT
- For Geotiff files: <PRODUCT> = shortname + "_L3_F1_NRT" F1/F2/F3 = 1, 2, and 3-day products. Eg: MCDWD_L3_F2_NRT, etc.
- NRT sites only retain last ~1 week of data
- NRT products are *not* archived (officially)

Data Access: APIs & Worldview

- NASA GIBS (Global Imagery Browse Service)
 - WMS, WMTS, TWMS services
 - Accessible via: ArcGIS, QGIS, Google Earth, NASA Worldview, and our new FLOOD viewer
 - Flood plus 1000+ other satellite imagery products
- Browsable web application: NASA Worldview (https://worldview.earthdata.nasa.gov)
 - MODIS Flood products from early 2021
 - VIIRS Flood products from June 2025
 - + Many other satellite imagery products
 - Allows comparison with source imagery
 - Allows comparison between dates or products
 - Only hosts 2 and 3-day flood products (not 1-day)
 - Navigate to: "Add Layers" → Floods → Flood
 → "Terra and Aqua MODIS"
 or → "NOAA-20 and NOAA-21/VIIRS"
 - Or: https://bit.ly/WorldviewFloods
 (pre-loaded with MODIS and VIIRS flood products)
 - Tutorial "Assessing Floodwaters" available on start page

Data Access: Worldview

Data Access: Worldview

- New Feature: Flood Events
- Lists recent events, with locations, and dates
- Can then compare to flood products available in Worldview
- Source: GDACS (Global Disaster Alert and Coordination System, (UN/EC), gdacs.org)

Worldview - live demo

Data Access: FLOOD viewer

- Customized viewer for flood products.
- Coming soon!
- Focused on flood and flood-related products, including non-NASA products.
 - MODIS and VIIRS 1-day flood products (along with 2 and 3-day)
 - NOAA/GMU VIIRS 1-day and 5-day flood products
 - NASA OPERA Sentinel-1 and HLS Water products
- Basic Mode: only 2-day products
- Advanced Mode: all products.
- Future efforts:
 - Add other flood products, such as Copernicus Sentinel-1 GLOFAS product
 - Flood events (as in Worldview)
 - Comparison tool (as in Worldview)
 - Flood alerts, based on product detections

NASA VIIRS Flood Product

NOAA/GMU VIIRS Flood Product

FLOOD - live demo

Product Archive

- Product fully reprocessed from Aqua launch (2002) through 2024, at Release 1
 - 22 full years: 2003-2024
- Finalizing:
 - Validation of the reprocessing.
 - Adding recurring flood class.
- Release expected soon (Fall 2025).
- Moving forward, MODIS and VIIRS products will be added to archive.
- Allows historical analyses and comparisons (such as development of the "recurring flood" mask).

Historical analysis

Lake Chad: 2003 - 2015

Historical analysis

Indus: 2003 - 2015

Future Directions:

- Beta release of FLOOD viewer
- Release of "Recurring flood" class update
- Release of reprocessed archive (2003-2024)
- Archiving moving forward
- Machine learning update to water detection algorithm (VIIRS)
 - Shows promise for **not** detecting shadows as water.
- Wish list:
 - Full MODIS flood product archive available in Worldview and FLOOD viewer
 - Sentinel-3/OLCI product

EARTHDATA

Discover and Access NASA's Near Real-Time Global Flood Products

Homepage: https://earthdata.nasa.gov/global-flood-product

- User Guide & FAQs, mailing list
- Links to LANCE download sites

FLOOD viewer: https://lance.modaps.eosdis.nasa.gov/flood

Worldview: https://worldview.earthdata.nasa.gov

Worldview with flood loaded: https://bit.ly/WorldviewFlood

Questions/Suggestions: dan.slayback@nasa.gov

or earthdata-support@nasa.gov

Additional product examples

California

- June 2023
- Re-emergence of Lake Tulare

Australia

Northern Territory & Queensland

• March 2023

Upper Mississippi River

• April 2023

