

Remote Sensing for Climate-Sensitive Infectious Diseases

Part 2: Case Study in the Use of Remote Sensing to Study Climate-Sensitive Infectious Diseases

Assaf Anyamba (UMBC/NASA GSFC), Tatiana Loboda (UMCP), Michael Wimberly (OU)

October 9, 2025

In the Last Part...

- Dr. Tatiana Loboda (University of Maryland) gave an overview of how remote sensing data can be applied to the study of climate-sensitive infectious diseases.
- Remote sensing can tell us about:
 - Hazard: Identify habitats and environmental conditions suitable for disease vectors
 - Exposure: Identify where humans might come into contact with disease vectors
 - Vulnerability: Identify proxies for socio-economic standing and access to care
- Altogether, this allows us to assess the disease risk.
- Different considerations of available parameters, coverage, resolution, and data quality may apply to each aspect of the risk.
- Satellite data preprocessing involves quality filtering, gap-filling, re-gridding, and conversion to a common projection.

Training Outline

How Remote Sensing Can be Used to Study Climate-Sensitive Infectious Diseases

> October 7, 2025 11:00 - 13:00 EDT

Part 2

Case Study in the Use of Remote Sensing to Study Climate-Sensitive Infectious Diseases

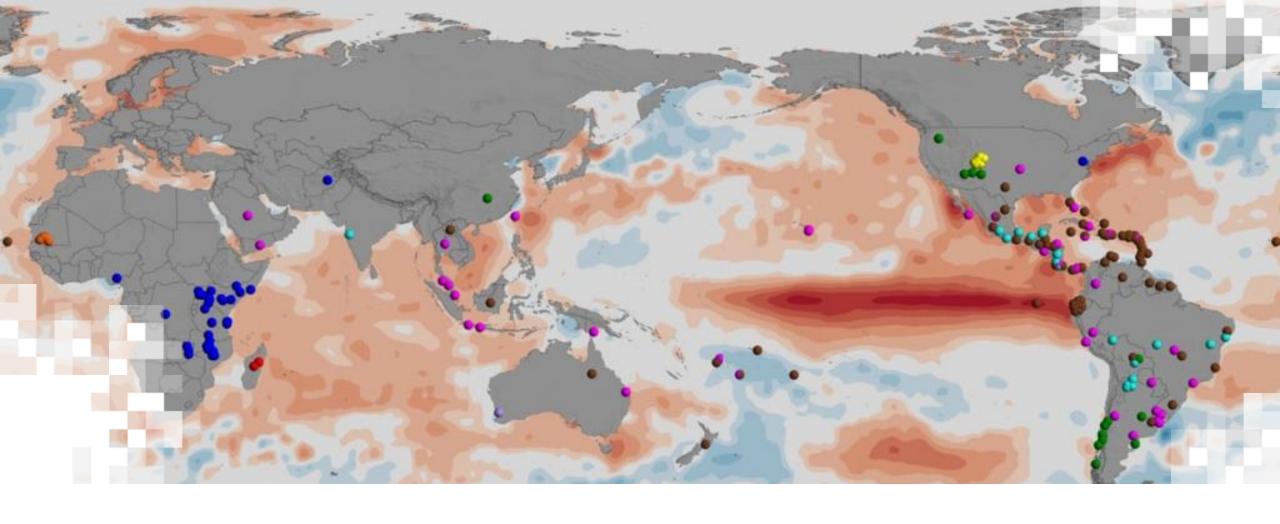
October 9, 2025

11:00 - 13:00 EDT

Homework

Opens October 9 – Due October 23 – Posted on Training Webpage

A certificate of completion will be awarded to those who attend all live sessions and complete the homework assignment(s) before the given due date.



Remote Sensing for Climate-Sensitive Infectious Diseases

Part 2: Case Study in the Use of Remote Sensing to Study

Climate-Sensitive Infectious Diseases

Part 2 Objectives

By the end of Part 2, participants will be able to:

- Identify the climatic and non-climatic factors that influence malaria life cycle, transmission, and global malaria burden
- Understand the specific requirements and rationale for malaria forecasting in Ethiopia
- Explain the basic functionality of the Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) – Modeling System and the satellite data used in its operation
- List the steps taken by EPIDEMIA to access, preprocess, and harmonize remotely sensed climate and data together with public health information
- Identify common advantages and challenges of working with remotely sensed data for infectious disease forecasting, as encountered in the EPIDEMIA case study

How to Ask Questions

- Please put your questions in the Questions box and we will address them at the end of the webinar.
- Feel free to enter your questions as we go. We will try to get to all of the questions during the Q&A session after the webinar.
- The remainder of the questions will be answered in the Q&A document, which will be posted to the training website about a week after the training.

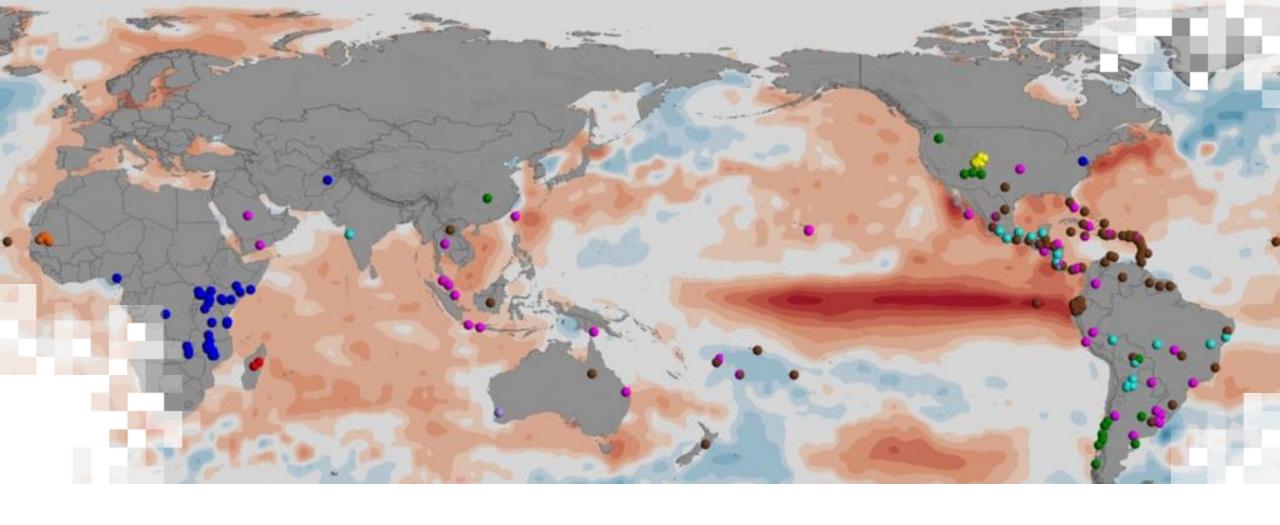
Part 2 – Trainers

Assaf Anyamba

Senior Research Scientist
UMBC & NASA GSFC

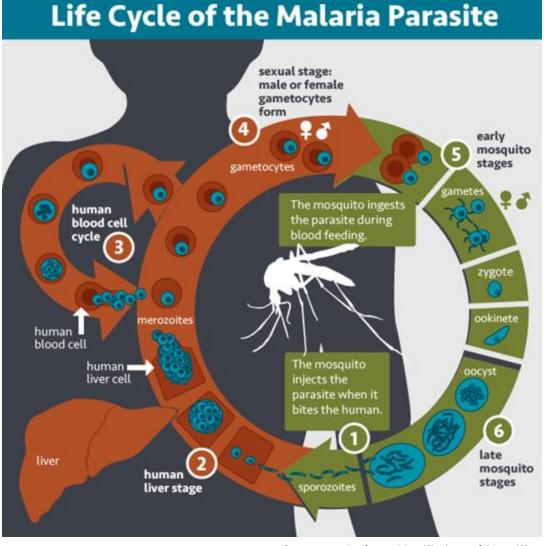
Michael Wimberly

Professor and Interim Director University of Oklahoma

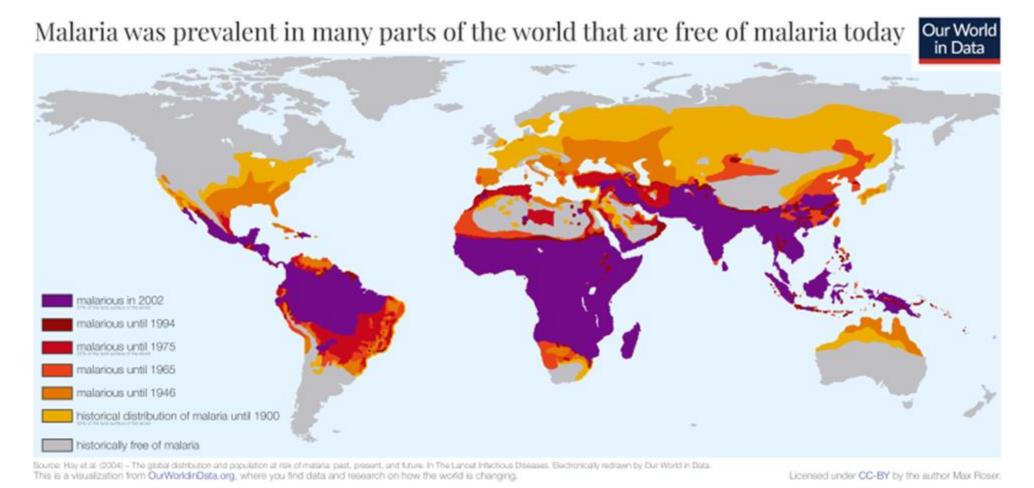


Background: Malaria and Factors that Impact Transmission

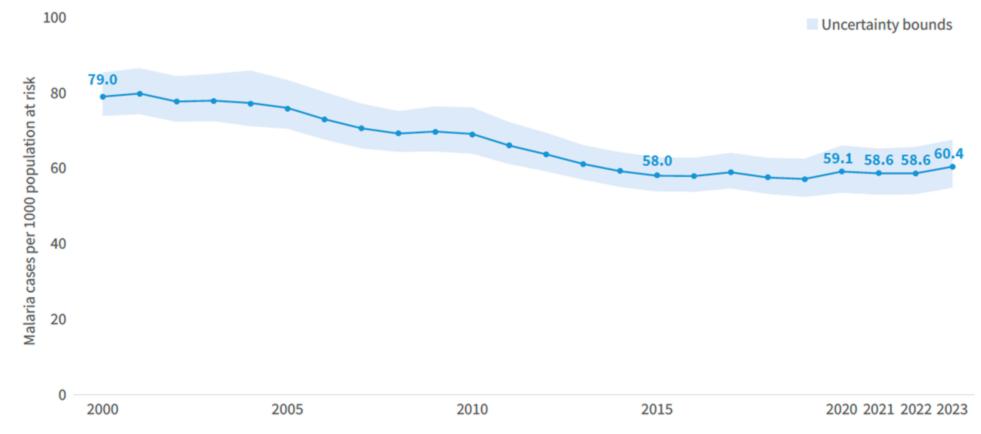
Malaria is a disease caused by *Plasmodium* parasites and vectored by mosquitoes in the genus *Anopheles*.



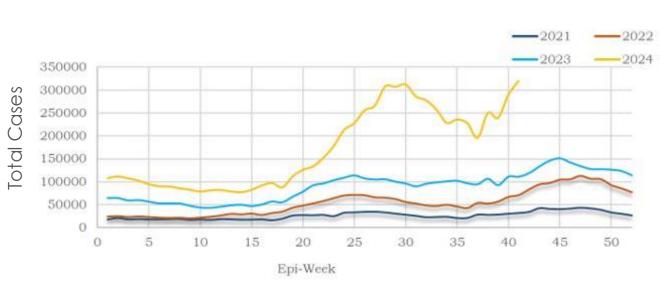
Malaria is a global disease, but its distribution was greatly reduced during the 20th century.



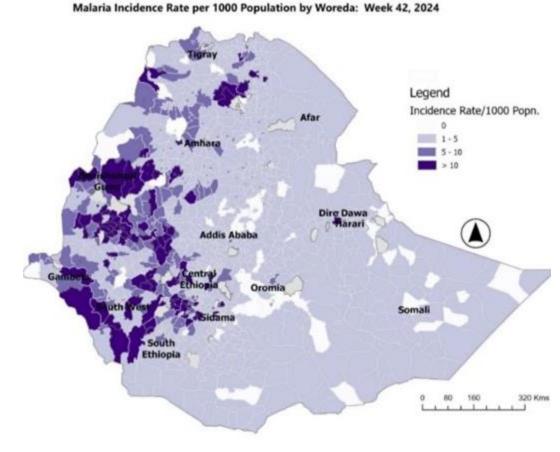
The global malaria burden has continued to decline since 2000, but incidence has resurged since 2015.



In Ethiopia, there have been substantial increases in malaria incidence



Source: World Health Organization, Disease Outbreak News, October 31, 2024

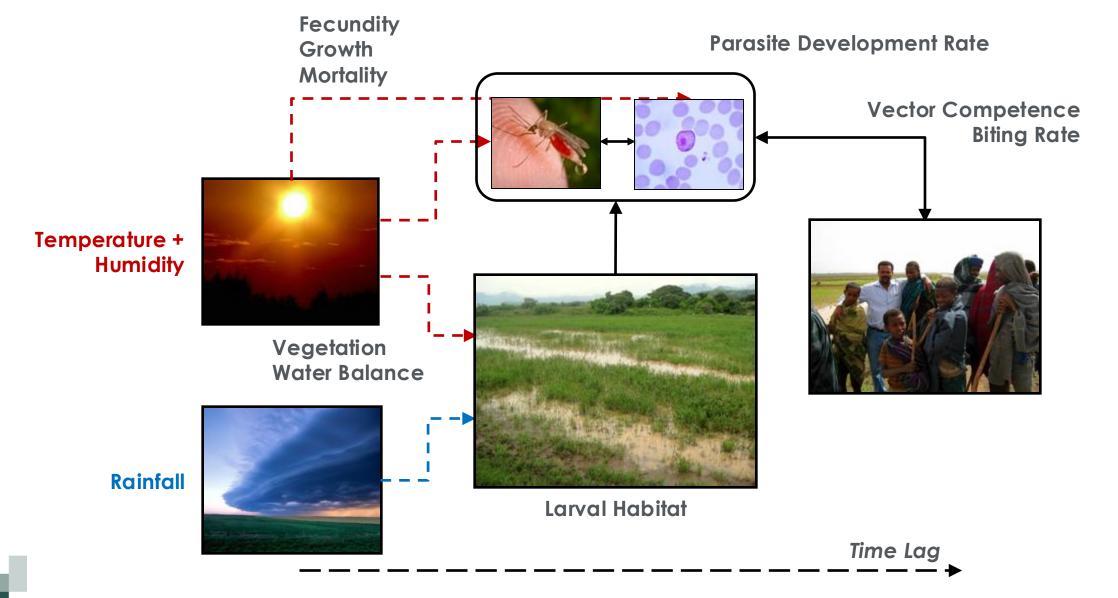


Background and Rationale for Malaria Forecasting in Ethiopia

en j

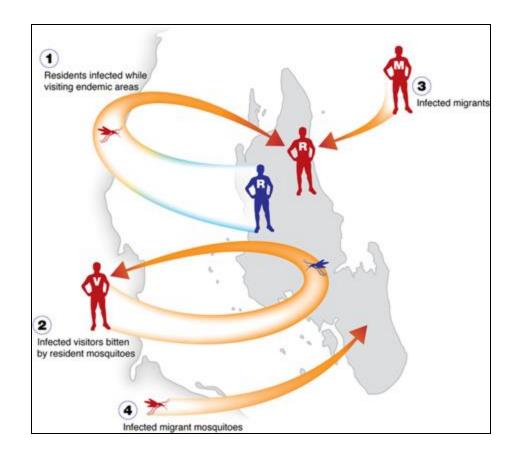
- High morbidity and mortality from epidemics in areas with unstable transmission
- Resurgent outbreaks in areas with declining malaria burdens
- New malaria risks emerging from climate change, drug and insecticide resistance, spread of urban malaria vectors
- Outbreak prediction can facilitate more rapid and targeted interventions that would reduce public health impacts

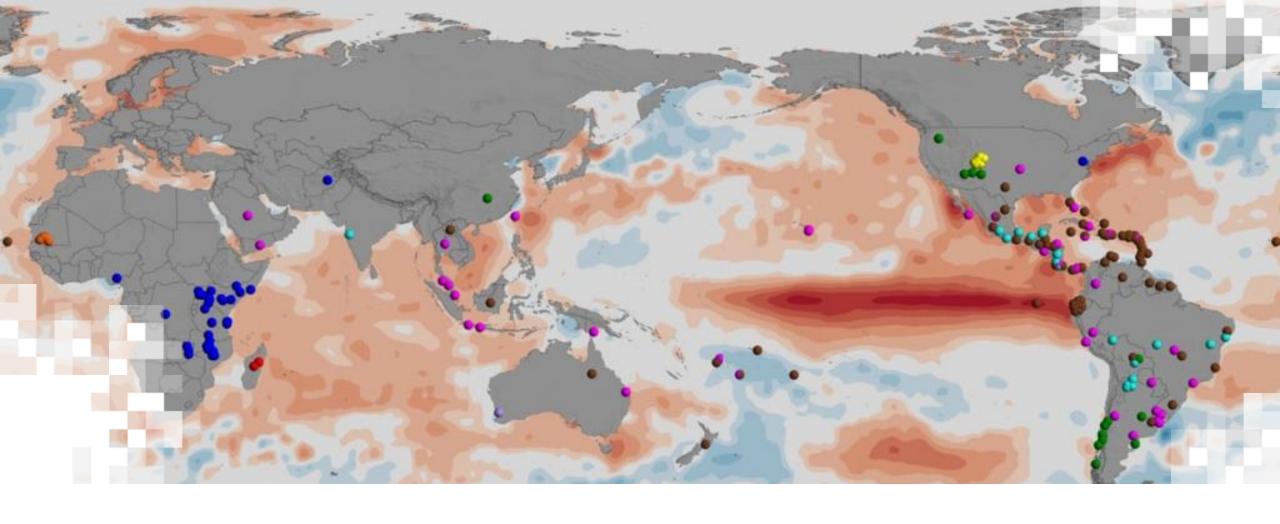
Climate factors, such as temperature and precipitation, affect malaria transmission.



However, non-climatic factors also influence malaria transmission.

- Movement of people and parasites
- Accessibility and quality of health care
- Interventions for malaria prevention and control





Remote Sensing Datasets, Tools, & Processing

Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA)

- Computer software co-developed by the University of Oklahoma (formerly South Dakota State University); Health, Development, and Anti-Malaria Association, Amhara Public Health Institute, and Bahir Dar University
- Piloted in the Amhara region
- Data driven approach combines malaria surveillance data with environmental data from Earth-observing satellites
- Multiple techniques for outbreak prediction
 - Early warning forecasts based on environmental models
 - Early detection based on recent malaria observations

EPIDEMIA has features that make it particularly well-suited for scaling up malaria early warning.

- Free and open-source software using freely available data
 - R language and environment for statistical computing
 - NASA remote sensing data products accessed through Google Earth Engine
- Automates time-consuming steps in the forecasting workflow
 - Acquires, processes, and formats data
 - Fits predictive models and generates forecasts
 - Produces detailed formatted reports with maps and charts
- Can be applied in any locations where the appropriate malaria and environmental data are available
- Requires trained analysts to operate software and interpret outputs

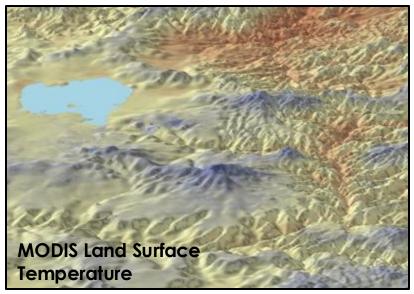
We use environmental data collected by NASA Earth-observing satellites.

Requirements:

- Global availability
- Spatially continuous observations
- Frequent measurement intervals
- Rapid availability (within days)

Datasets Used:

- Land Surface Temperature (MODIS LST)
- Vegetation Greenness and Moisture Indices (MODIS/VIIRS Optical-IR Reflectance)
- Precipitation (Global Precipitation Measurement [GPM] Mission)



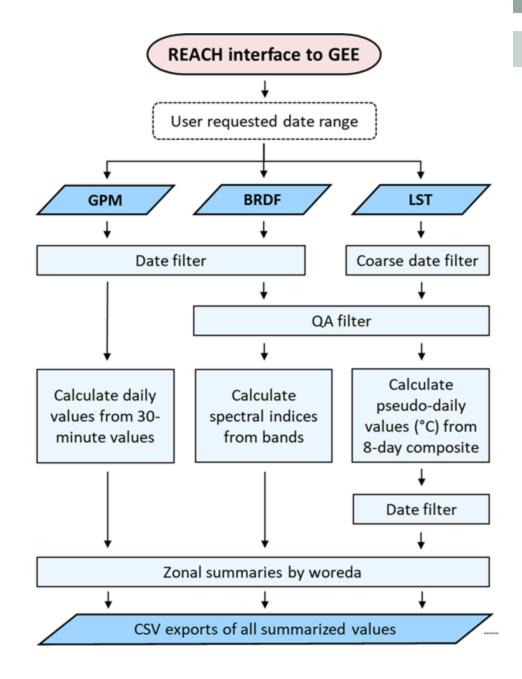
NASA Earth science data products are processed to generate environmental indices.

Data Source	Indices
MODIS Terra 8-day land surface temperature and emissivity product (MOD11A2)	Daytime land surface temperature (LST), Nighttime LST, Mean LST
MODIS bidirectional reflectance distribution function (BRDF) adjusted surface reflectance product (MCD43B3)	Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Normalized difference water indices (NDWI5 and NDWI6)
Integrated Multi-SatellitE Retrievals for GPM (IMERG) product version 6	Total precipitation

Wimberly et al. (2022) Scientific Data 9: 208

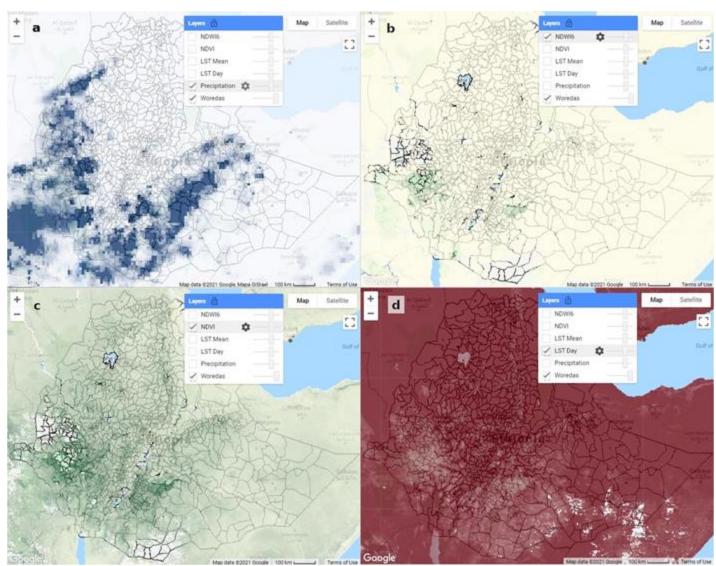
Multiple data processing steps are...

- Select desired date range
- Filter out low-quality observations
- Calculate spectral indices
- Temporal summarization (daily)
- Spatial summarization by zone (woreda)
- Export data summarized data table
- Additional quality-control steps are carried out on the woreda-level time series
 - Screening anomalous values
 - Imputation of missing data

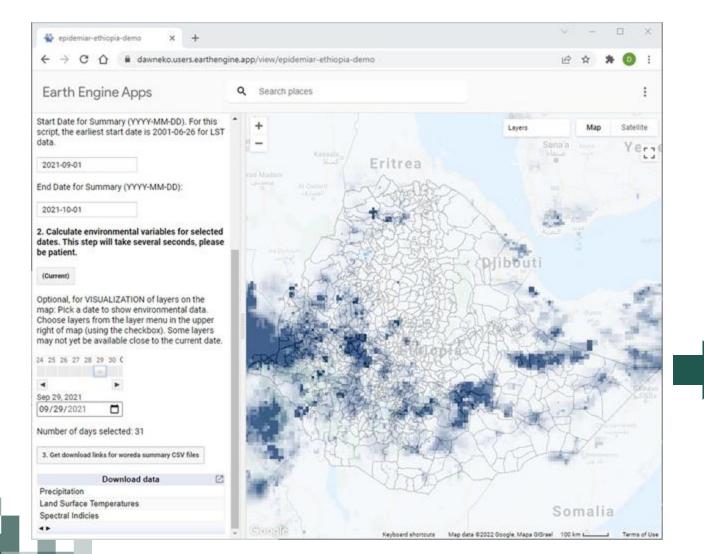


Geographic Patterns of Environmental Indices and Woreda Boundaries

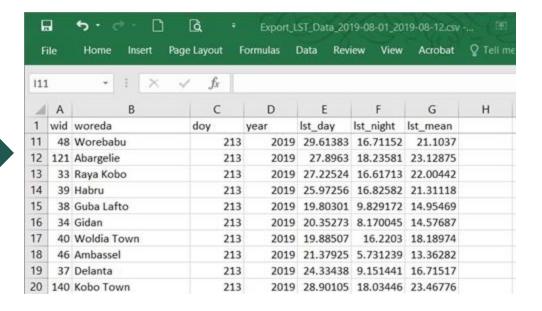
- a) Precipitation
- b) Normalized
 Difference Water
 Index (NearInfrared/Shortwave
 Infrared)
- c) Normalized
 Difference
 Vegetation Index
 (Near-Infrared/Red)
- d) Land Surface Temperature



These environmental data are accessed and processed in the cloud using Google Earth Engine (GEE).

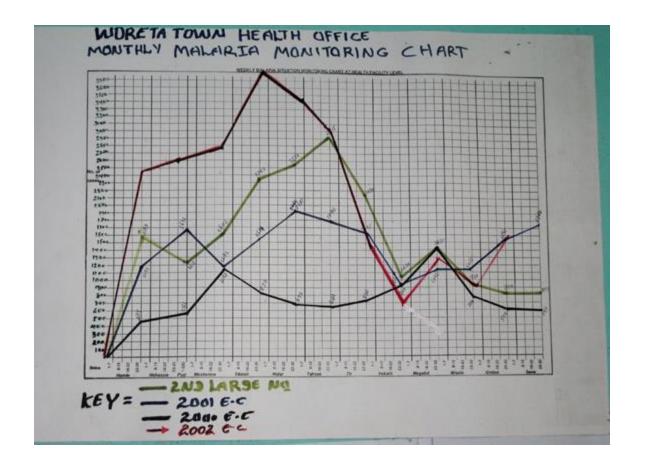


- Retrieving Environmental Analytics for Climate and Health (REACH)
- Web-based GFF tool for data access



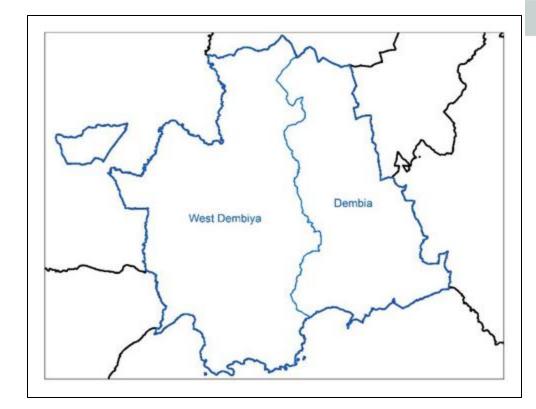
Weekly malaria data are obtained from Ethiopia's Public Health **Emergency Management (PHEM) system.**

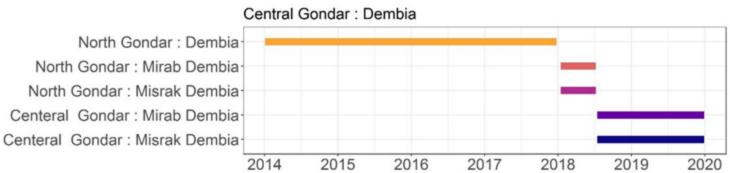
- Weekly woreda-level counts of confirmed malaria cases by species from 2014-2019
 - Plasmodium falciparum/mixed
 - Plasmodium vivax
- Require multiple levels of processing
 - Harmonization with other data sources
 - Screening for suspect values
 - Imputation of missing and suspect data



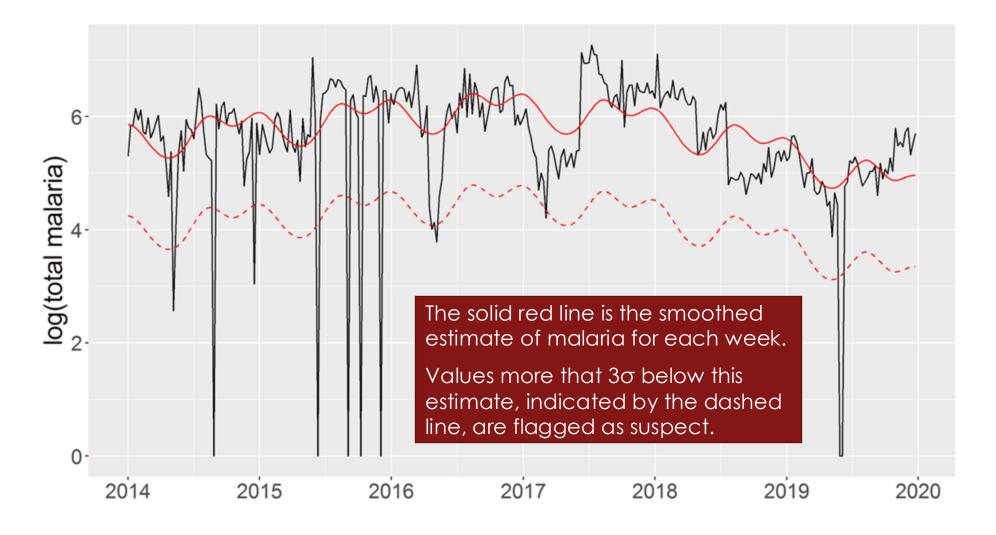
Geographic data are harmonized to resolve inconsistencies.

- Geographic Changes
 - Split from "Dembia" into "Misrak Dembia" & "Mirab Dembia"
 - Change of zone from "North Gondar" to "Centeral Gondar"
- Spelling Differences
 - "West Dembiya" vs. "West Dembia" vs. "Mirab Dembia"
 - "Central Gondar" vs. "Centeral Gondar"
- All merged into "Dembia" to create a standardized time series for modeling

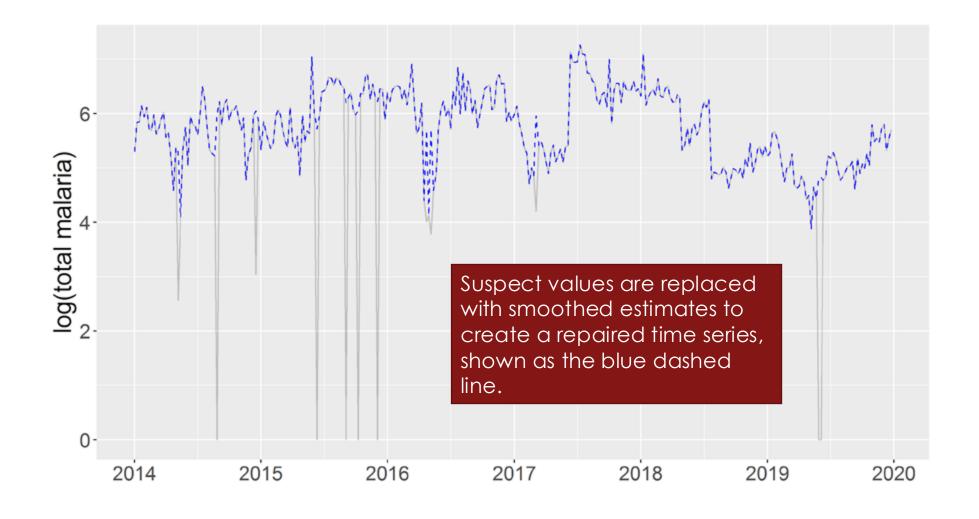




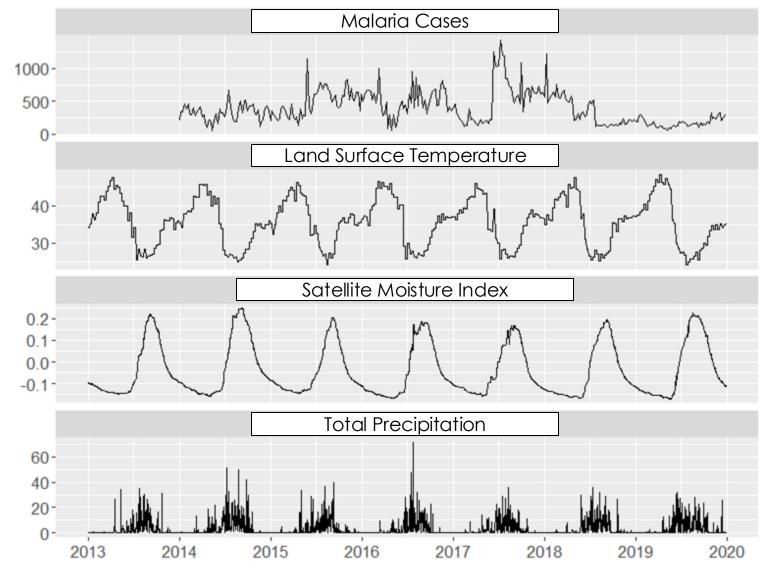
We used a robust linear model to screen out weeks where there were unusually low case counts.



We then replaced suspect and missing data with smoothed estimates from the robust model.

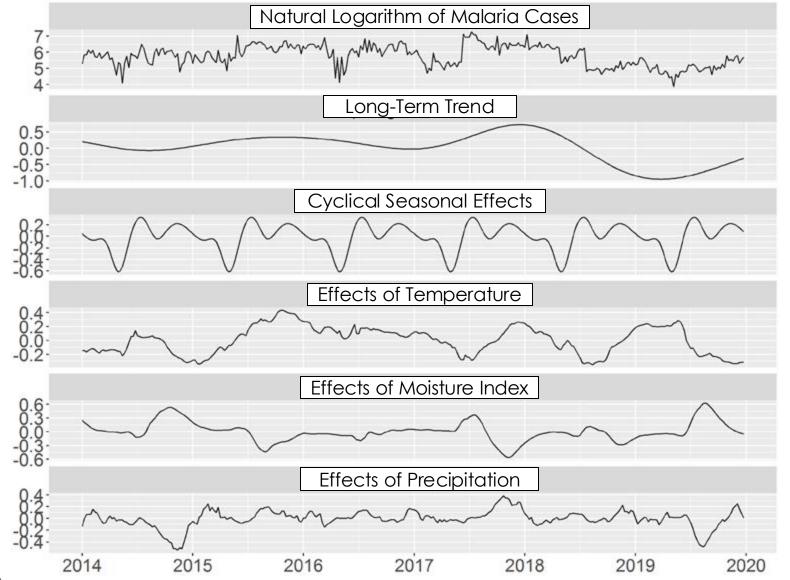


Data for modeling include time series of malaria cases and remotesensed environmental variables for each district.

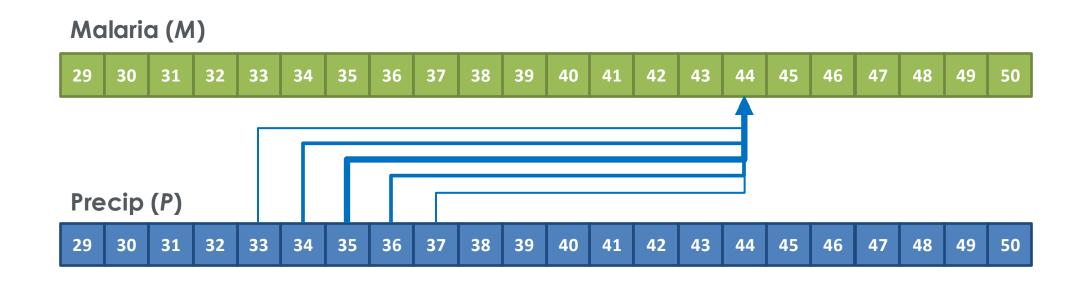


NASA ARSET – R

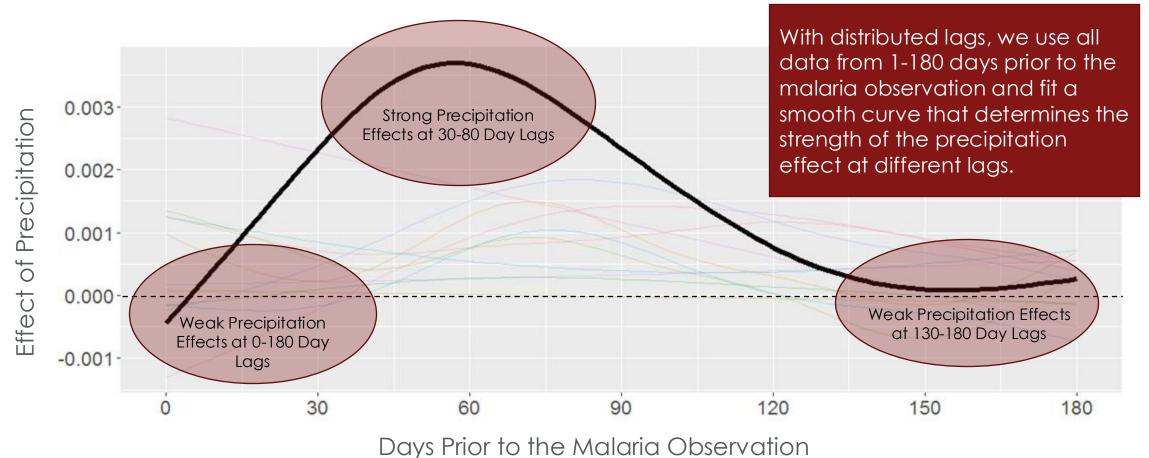
Time series models are used to decompose the malaria data into a set of predictable components.



The influences of climate variation on malaria are modeled as lagged environmental effects.

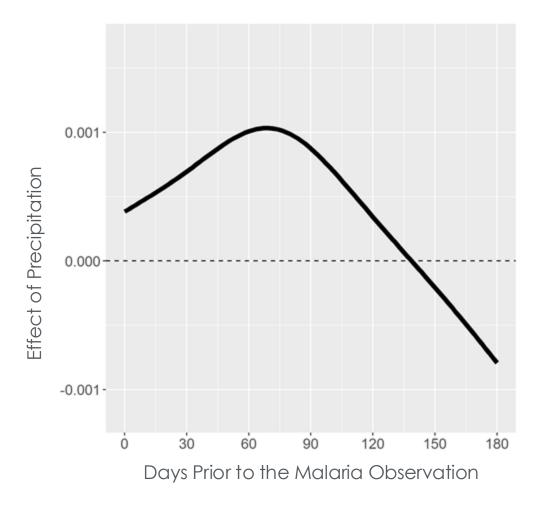


- How do we determine the correct lag between precipitation and malaria case occurrence?
- What if there are multiple lags, with a different effect for each lag?

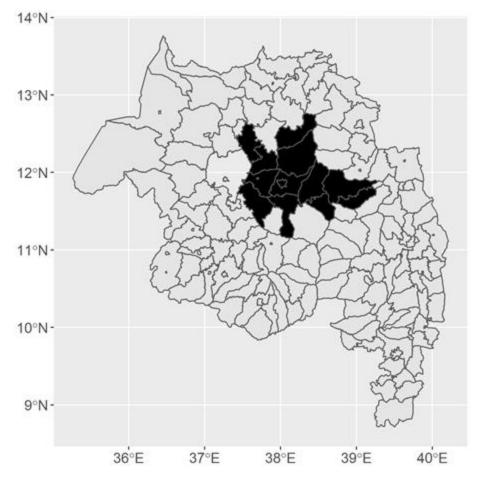


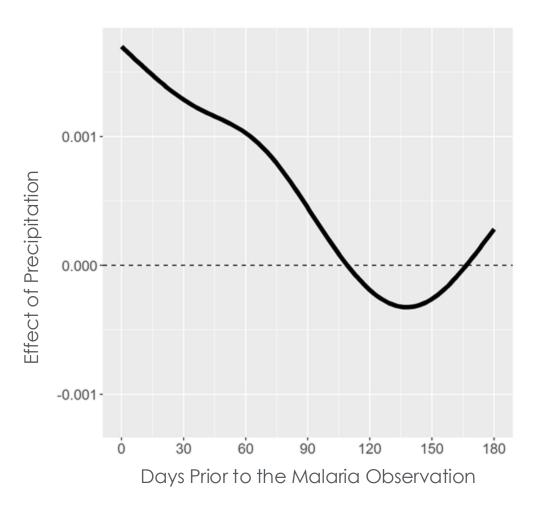
We do not expect lagged effects to be the same everywhere. This cluster in a drier location with a dual rainfall peak has the strongest precipitation effect on malaria at a 10-week lag.



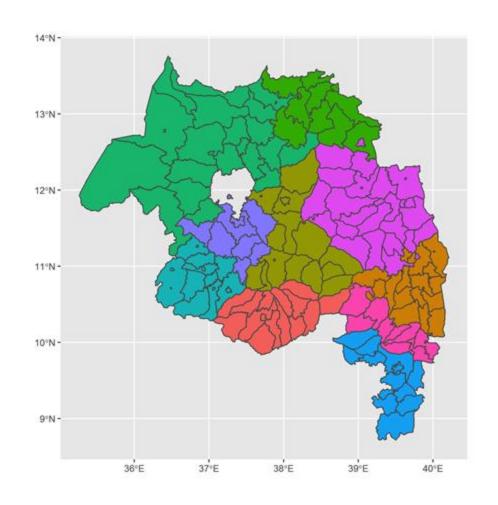


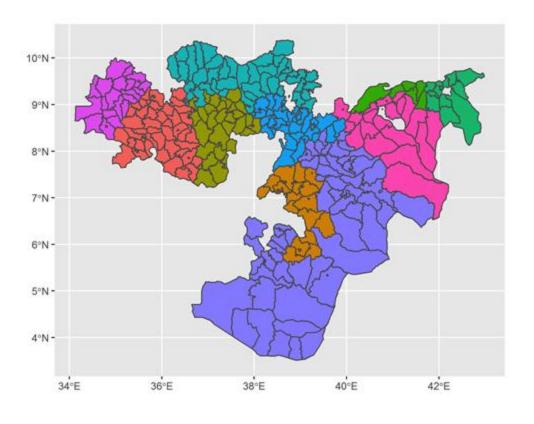
In contrast, this cluster in a wetter region with a single rainfall peak has the strongest precipitation effect on malaria at lags of 1-4 weeks.



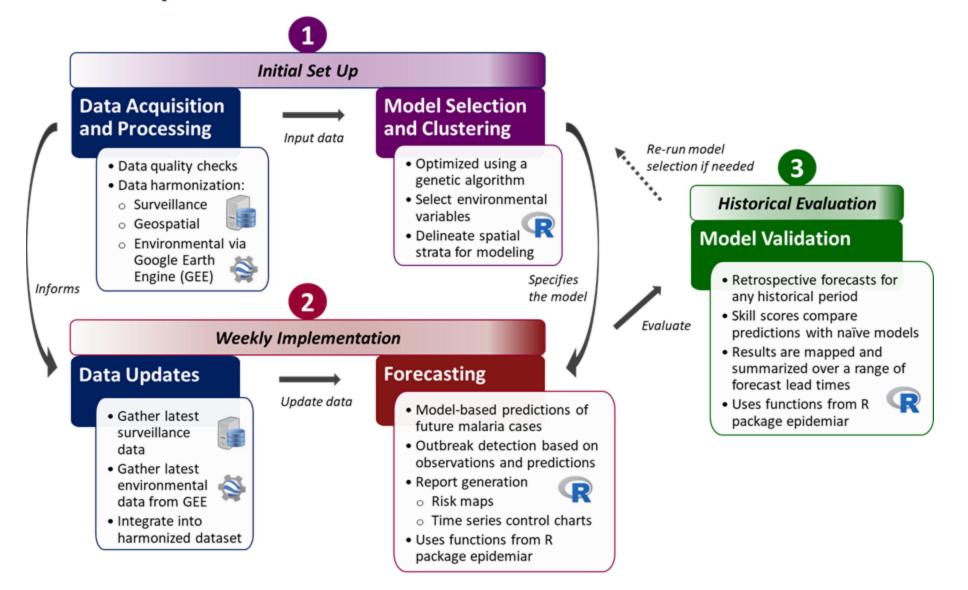


Optimization methods are used to assign woredas to clusters with similar environmental sensitivities.

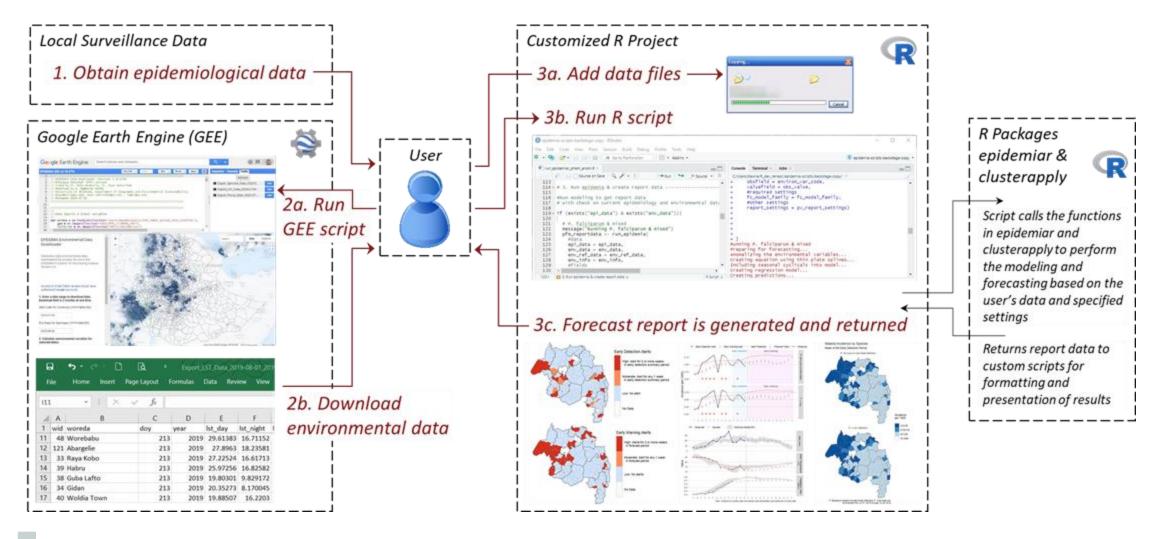




The basic workflow for implementing malaria forecasting in EPIDEMIA involves three steps.



Running EPIDEMIA operationally requires several steps to generate a weekly forecast.



We implemented EPIDEMIA as a semi-automated system running on local workstations.

Semi-Automated System Running on Local Workstations (EPIDEMIA) Completely Automated, Menu-Driven, Web-Based System

- Minimal development costs
- Leverages existing computer resources
- Time and cost of data analysis
- Lack of consistency
- Difficult to replicate

- Considerably faster than a fully manual approach
- Implementable on a variety of computers
- Highly customizable
- Troubleshooting on diverse systems
- Requires some manual steps
- R and RStudio can be challenging for some users

- Easiest and quickest to use
- Centralized maintenance
- High cost for development and maintenance
- Data sharing limitations
- System integration challenges

EPIDEMIA automatically generates a formatted report with several types of graphical output.

Summary <u>Alert</u> Maps

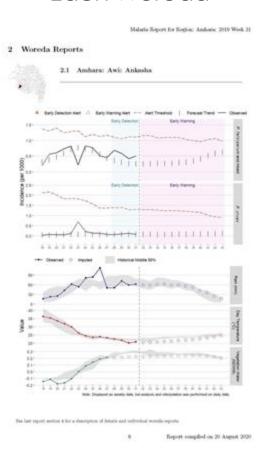
Malaria Early Detection and Early Warning Report For the Amhara Region of Ethiopia Week 31: July 29, 2019 - August 04, 2019

> EPIDEMIA Team August 20, 2020

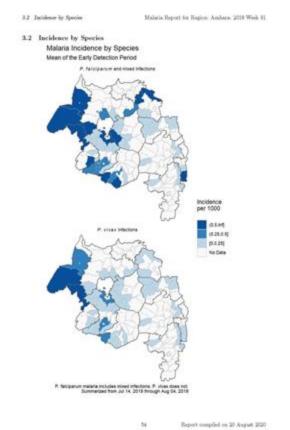
1.1 Alert Summaries 1.1 Alert Mapo P, foleoporum and microd Early Detection Alerts High Aust for 2 or more weeks in early election nummary period Moderate Aust for any 1 week in early election nummary period Line: No more Early Warning Alerts High Aust for 2 or more weeks in early election nummary period Line: No more Line: No

Early Detertion Feriod: Last & wederbefore forecasting start-date. Dote range: Jul 14, 2019 Movingh Aug 04, 2019. Early Warship Period: Remonstring period of 12 weeks. Date range: Aug 11, 2010 through One 27, 2018.

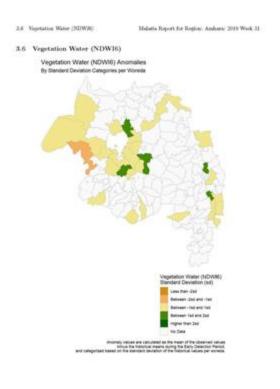
<u>Time Series Charts</u> for Each Woreda

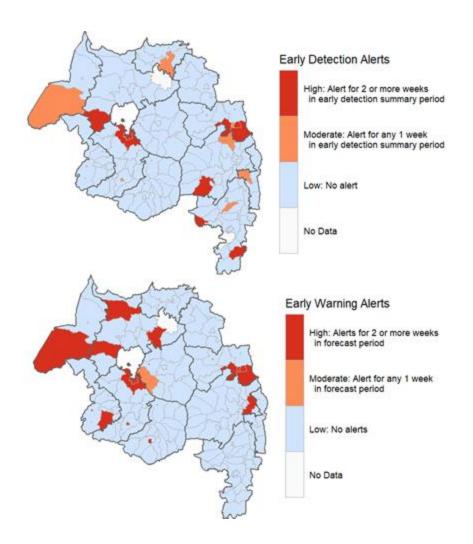


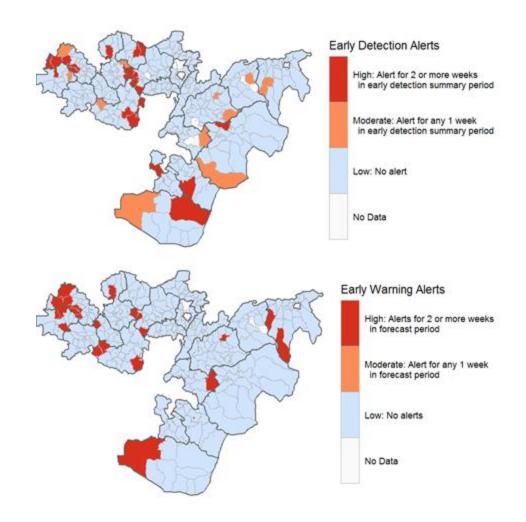
Maps of Recent Malaria Incidence



Maps of Recent Climate Anomalies







Time series reports provide details about each Woreda.

Observed malaria incidence (solid lines)

Previous 1-week ahead forecasts (vertical bars)

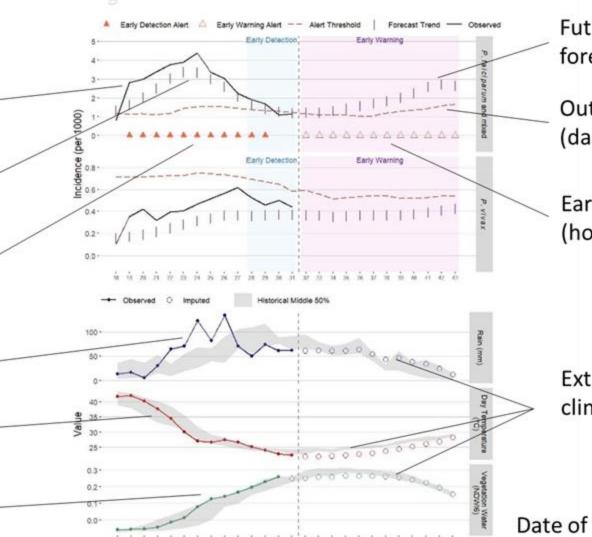
Early detection alerts (solid triangles)

Precipitation (blue line)

Temperature (red line)

Satellite moisture index (green line)

Amhara: West Gojam: Bahirdar Zuria



Future malaria forecasts (vertical bars)

Outbreak threshold (dashed line)

Early warning alerts (hollow triangles)

Extrapolations of recent climate trends

forecast

The time series charts provide early detection of emerging epidemics as well as early warning of future epidemics.

Early Detection

Early Warning



Early **Detection** Alerts triggered when the **observed value** is higher than the threshold

Early Warning Alerts triggered when the forecasted values are higher than the threshold

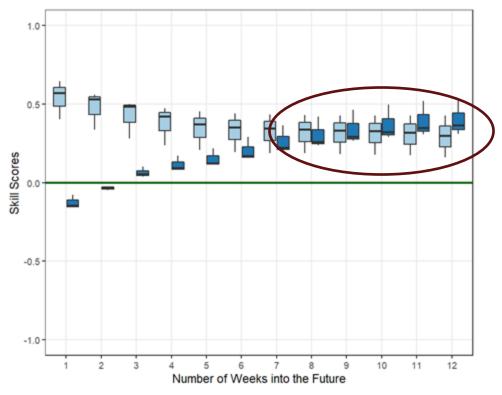
Thresholds are calculated using Farrington Improved algorithm:

- Based on historical case counts and patterns
- Allows adjustments for trend, seasonality, prior outbreaks, and more

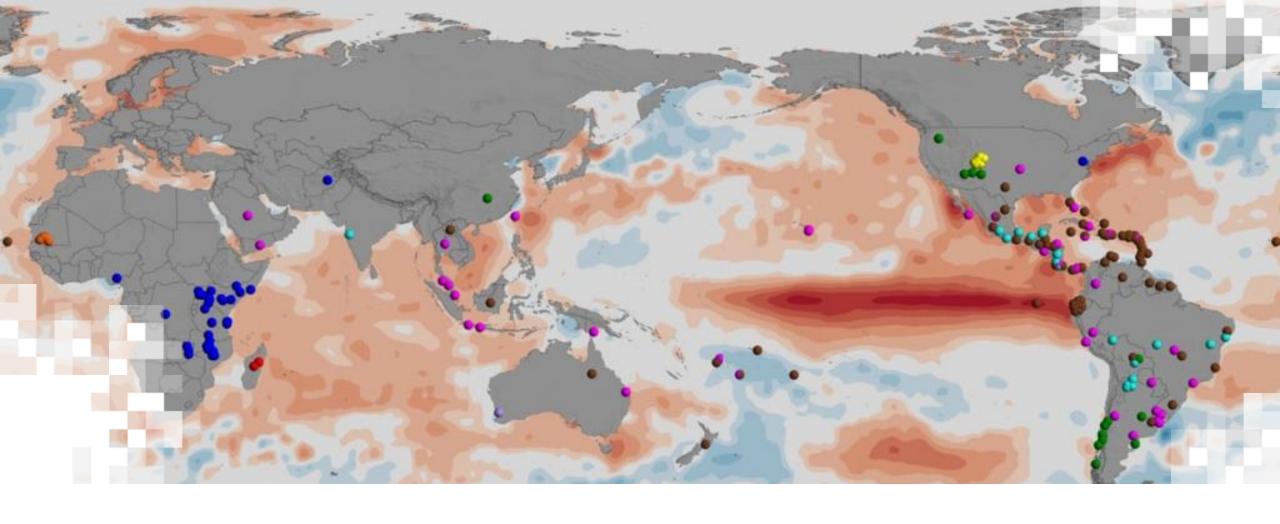
EPIDEMIA automatically produces validation reports of historical forecast accuracy.

- Summary charts display skill scores for forecasts made over a range of lead times.
- Positive skill scores mean that environmental data are improving the predictions of malaria compared to a null model.
 - Historical weekly averages
 - Most recent weekly observation
- EPIDEMIA forecasts generally have high predictive skill out to 12 weeks in the future.

Skill Score Summary Chart for Amhara (47 Pilot Woredas) from Jan. 1 2018-Dec. 31 2019



Compared to Naïve Model Average Week of Year Persistence



Advantages and Challenges of Using Remote Sensing Data for the Case Study

Benefits and Drawbacks to Using Remote Sensing Data in the Case Study

Benefits:

- Freely available
- Consistent measurements and continuous spatial coverage
- Only feasible source of environmental data
- Provides information about important environmental determinants of malaria (temperature and precipitation)

Drawbacks:

- High volume of data to process
- Data gaps and anomalies related to clouds
- Lack of data on some key environmental determinants (humidity)

Barriers to Integration and how These were Overcome

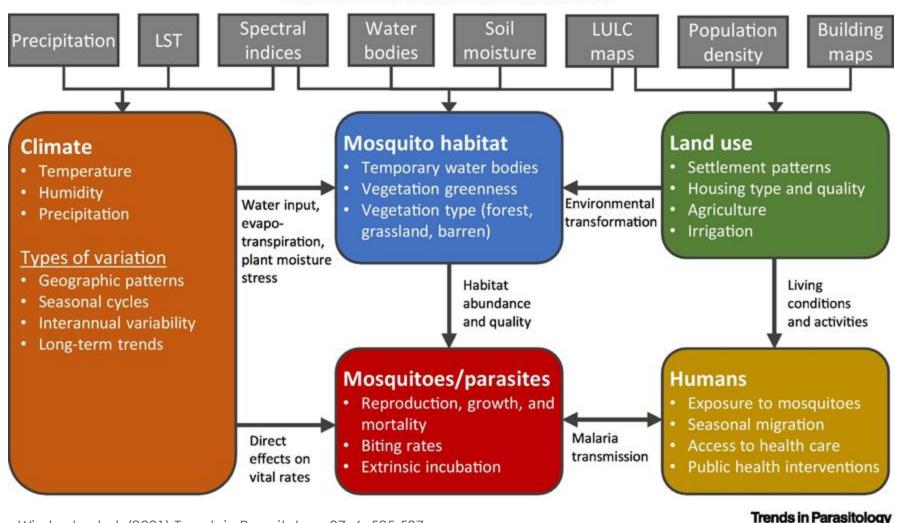
- Large volumes of remote sensing data to process
 - Automated systems
 - Cloud-based implementation in GEE
- Access to malaria surveillance data
 - Design for location implementation to bring the tool to the users
- Limited understanding of satellite data
 - Training and capacity building

Challenges with Long-Term Sustainability and Implementation

- Limited resources in public health agencies for implementing early warning systems
- Need to maintain and update software
- Disruptions to malaria surveillance programs
- Changes in satellite missions
 - TRMM to GPM transition
 - MODIS to VIIRS transition
- Overarching need for more expertise in satellite remote sensing, epidemiological modeling, and software engineering
 - Long-term efforts to build expertise and develop communities of practice
 - Substantial growth over the past 15 years

Alternative Datasets and Approaches

Data from satellite observations



Wimberly et al. (2021) Trends in Parasitology 37, 6: 525-537

Alternative Datasets and Approaches

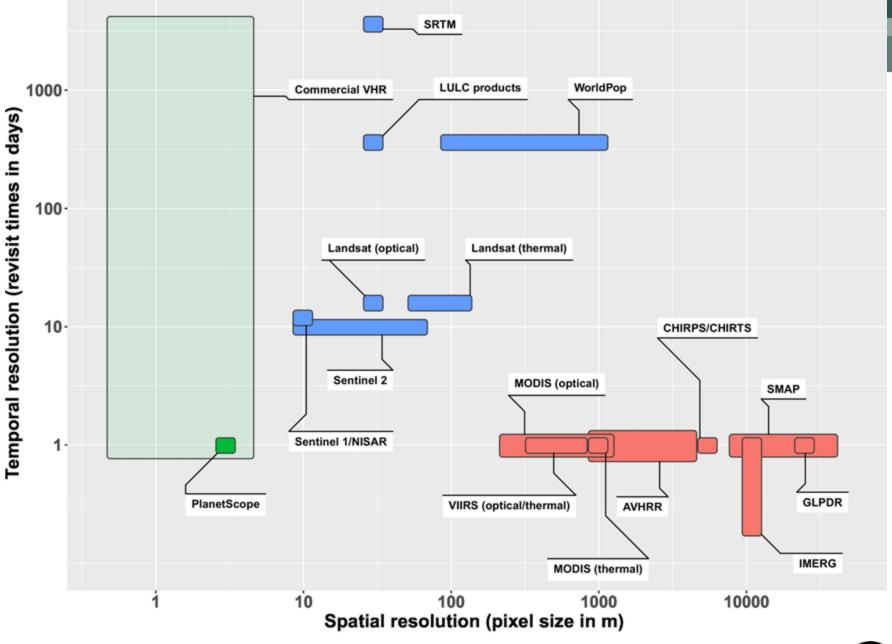
Applications:

Climate Variability

Individual Landscape Features

Land Use and Habitat Types

Wimberly et al. (2021) Trends in Parasitology 37, 6: 525-537



Resources

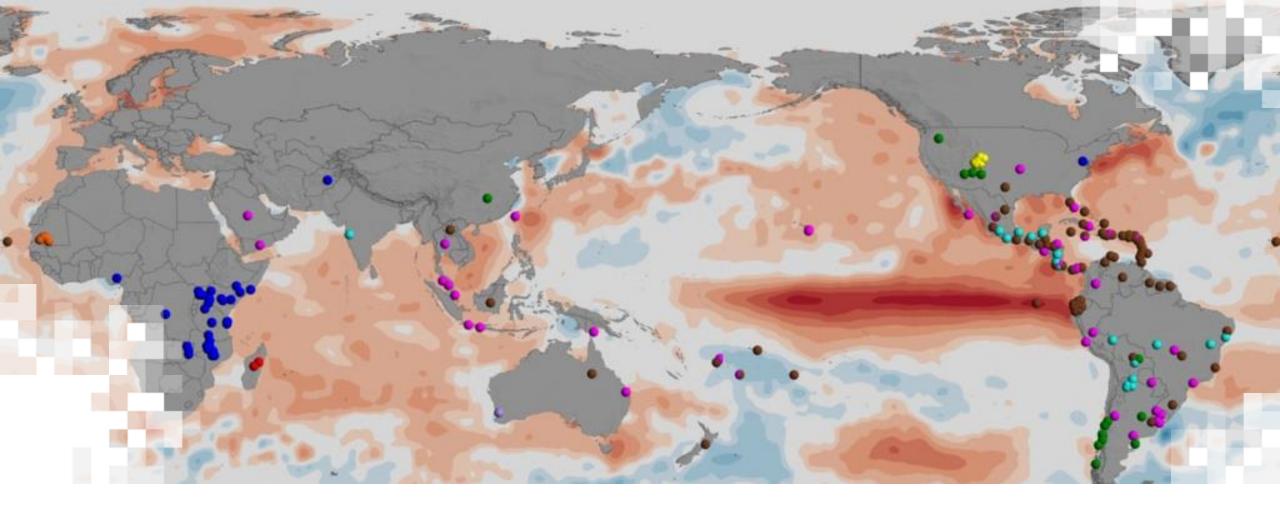
- Wimberly, M. C. 2023. <u>Geospatial Environmental Data for Planetary Health Applications</u>. Pages 123-141 In: T. Hung Wen, T. Chuang, and M. Tipayamongkholgul, editors. Earth Data Analytics for Planetary Health. Springer, New York.
- Neta, G., W. Pan, K. Ebi, D. F. Buss, T. Castranio, R. Lowe, A. M. Stewart-Ibarra, L. K. Hapairai, M. Sehgal, M. C. Wimberly, L. Rollock, M. Lichtveld, J. Balbus. 2022. <u>Advancing climate change health adaptation through implementation science</u>. The Lancet Planetary Health 6: e909-18.
- Wimberly, M. C., D. M. Nekorchuk, and R. R. Kankanala. 2022. <u>Cloud-based applications for accessing satellite Earth observations to support malaria early warning</u>. Scientific Data 9: 208.
- McMahon, A., A. Mihretie, A. A. Ahmed, M. Lake, W. Awoke, and M. C. Wimberly. 2021. Remote sensing of environmental risk factors for malaria in different geographic contexts. International Journal of Health Geographics 20: 28.
- Nekorchuk, D. M., T. Gebrehiwot, M. Lake, W. Awoke, A. Mihretie, and M. C. Wimberly.
 2021. Comparing malaria early detection methods in a declining transmission setting in northwestern Ethiopia. BMC Public Health 21: 788.

Resources

- Wimberly, M. C., K. M. de Beurs, T. V. Loboda, W. K. Pan. 2021. <u>Satellite observations and malaria:</u> new opportunities for research and applications. Trends in Parasitology 37: 525-537.
- Wimberly, M. C., and D. M. Nekorchuk. 2021. Malaria Early Warning in Ethiopia: A Roadmap for <u>Scaling to the National Level</u>. U.S. Agency for International Development.
- Alemu, W. G., and M. C. Wimberly. 2020. Evaluation of remotely sensed and interpolated environmental datasets for vector-borne disease monitoring using in situ observations over the Amhara Region, Ethiopia. Sensors 20: 1316.
- Davis, J. K., Gebrehiwot, T., Worku. M., Awoke, W., Mihretie, A., Nekorchuk, D., and M. C. Wimberly. 2019. A genetic algorithm for identifying spatially-varying environmental drivers in a malaria time series model. Environmental Modelling and Software 119: 275-284.
- Merkord, C. L., Y. Liu, A. Mihretie, T. Gebrehiwot, W. Awoke, E. Bayabil, G. M. Henebry, G. T. Kassa, M. Lake, and M. C. Wimberly. 2017. Integrating malaria surveillance with climate data for outbreak <u>detection and forecasting: the EPIDEMIA system</u>. Malaria Journal 16:89.

Resources

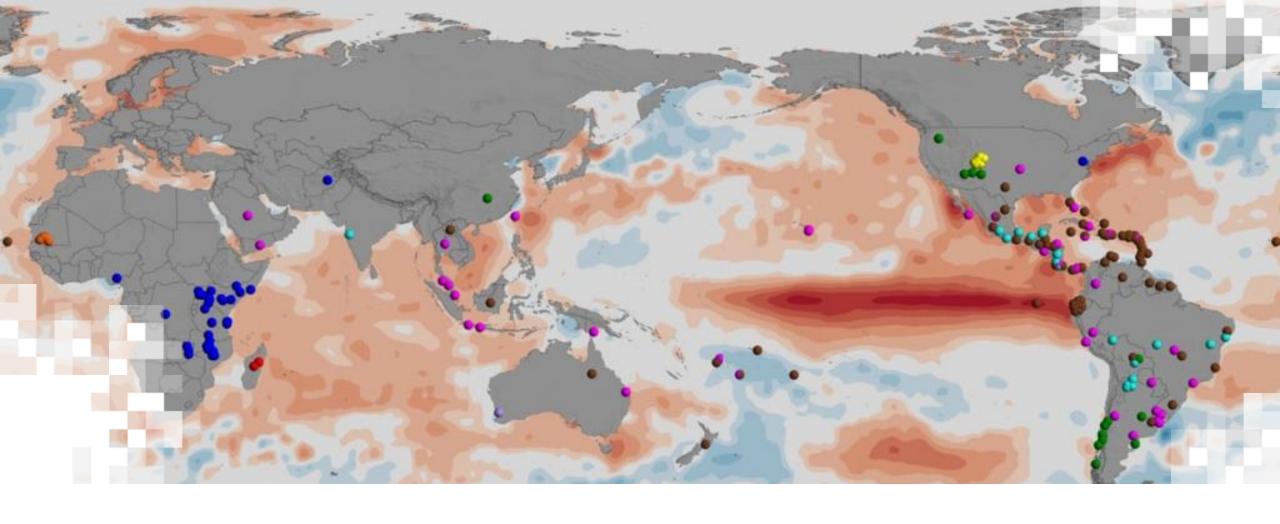
- Midekisa A., B. Beyene, A. Mihretie, E. Bayabil, M. C. Wimberly. 2015. <u>Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia</u>. Parasites & Vectors 8: 339.
- Midekisa, A., G. B. Senay, and M. C. Wimberly. 2014. <u>Multi-sensor Earth Observations to Characterize Wetlands and Malaria Epidemiology in Ethiopia</u>. Water Resources Research 50: 8791-8806.
- Midekisa, A., G. Senay, G. M. Henebry, P. Semuniguse, and M. C. Wimberly. 2012. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria Journal 11: 165.



Part 2: **Summary**

ARSET Summary

- m
- In Ethiopia, new malaria risks are emerging, which requires accurate forecasting to support rapid, targeted interventions to reduce public health impacts.
- The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) Modeling System uses satellite remote sensing data:
 - MODIS: Land Surface Temperature
 - MODIS, VIIRS: Vegetation Greenness (NDVI) and Moisture (NDWI) Indices
 - GPM/IMERG: Precipitation
- The EPIDEMIA process involves:
 - Access and preprocess remote sensing data on the cloud (Google Earth Engine)
 - Gather recent case data from Ethiopia's Public Health Emergency Management system
 - Harmonize & integrate the data, accounting for missing data and changing boundaries
 - Run a forecasting model and produce a report of early detections and early warnings
- Remote sensing provides the only feasible source of the required environmental data in Ethiopia.
- High data volumes, transition to new missions, need for local training on the use of satellite data,
 and limited resources to sustain long-term implementation are continuing challenges.



Remote Sensing for Climate-Sensitive Infectious Diseases
Summary

Training Summary

- Remote sensing datasets commonly used to study climate sensitive infectious diseases include:
 - MODIS, VIIRS: land surface temperature, vegetation (e.g., NDVI)
 - Landsat, Sentinel 2: land use/land cover, perennial/ephemeral water
 - GPM/IMERG: precipitation
- Common benefits of using remote sensing data include:
 - Diverse measured parameters
 - Broad availability
 - Consistent & repeated coverage
 - Free accessibility
- Common challenges of using remote sensing data include:
 - Data discovery
 - Quality assessment
 - Gap-filling
 - Large data volumes

Homework and Certificates

Homework:

- One homework assignment
- Opens on 10/09/2025
- Access from the <u>training webpage</u>
- Answers must be submitted via Google Forms
- Due by 10/23/2025

Certificate of Completion:

- Attendall live webinars (attendance is recorded automatically)
- Complete the homework assignment by the deadline
- You will receive a certificate via email approximately two months after completion of the course.

Contact Information

Trainers:

- Dr. Assaf Anyamba
 - assaf.anyamba@nasa.gov
- Dr. Tatiana Loboda
 - loboda@umd.edu
- Dr. Michael Wimberly
 - mcwimberly@ou.edu

- **ARSET Website**
- **ARSET YouTube**

Thank You!

