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Sampling designs for SAR-based forest survey: 
Introduction 

• Need: Timely, accurate information on forest carbon stocks and changes 
to reduce carbon emissions from the forest sector 
• Problem: Traditional forest inventory sampling designs are 

difficult/impossible to implement
• Large numbers of well distributed field plots = $$$ 

• Solution! : New sampling designs using RS data! 





Sampling designs for SAR-based forest survey: 
Introduction 

• Need: Timely, accurate information on forest carbon stocks and changes 
to reduce carbon emissions from the forest sector 
• Problem: Traditional forest inventory sampling designs are 

difficult/impossible to implement
• Large numbers of well distributed field plots = $$$ 

• Solution! : New sampling designs using RS data! 
• Updated solution! : New sampling designs using SAR! 



Sampling designs for SAR-based forest survey: 
Introduction 

• Sampling designs and statistical modelling/estimation 
frameworks are increasingly sought with the following 
properties: 

1. Understand, quantify, and communicate uncertainty
2. Be efficient!

1. The less field plots the better!
3.Provide flexibility to accommodate a variety of field plot 

configurations and remote sensing data acquisition 
strategies/resolutions



Sources of uncertainty in a carbon inventory and 
monitoring program 

• Three primary sources of variability in the context of a forest carbon 
inventory and monitoring system: 

1) Measurement error
2) Modelling error 

• Allometry
• Relationships with auxiliary information

3) Sampling error



Measurement error

• Discrepancy between a recorded field measurement and the expected value 
of the measurement as defined by documented protocol
• Introduced through inadequate training or lack of adherence to protocol. 
• In practice, measurement error is usually assessed and mitigated through quality 

assurance/quality control (QA/QC) procedures 
• In many cases, assumed to be minimal in comparison to the measurement itself 

(Gregoire and Valentine, 2008, p. 32). 



Modeling error

• In the context of forest carbon monitoring using remote sensing, modelling error is 
introduced in two ways:

1. The use of allometric models to estimate tree-level biomass/carbon using various tree 
measurements (diameter at breast height, height, etc.)

2. The use of models relating the remotely-sensed measurement (SAR backscatter, air photo-
derived canopy height and cover, etc.) to the plot-level biomass/carbon
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Modeling error

• Uncertainty due to allometric modelling remains the most difficult source of 
error to account for in large scale carbon monitoring programs (Duncanson et 
al., 2017).  
• Emergence of new technologies, such as terrestrial laser scanning (Calders et al., 2015)  

hold promise for improving the efficiency of field measurements & assessment of 
uncertainty

• National forest inventory programs often do not explicitly account for this error 
in official reports. 



Estimation of biomass using SAR 

• Due to its sensitivity to forest biomass, global coverage, and capability to penetrate cloud 

cover, L-band satellite radar has been used extensively as an auxiliary source of data to 

support forest monitoring programs across a range of biomes

• L-band dual-polarization (HH, HV) backscatter well-correlated with forest biomass up to 

approximately 150 Mg/ha, particularly useful for assessment of low-biomass forests (high-

latitude boreal biome, tropical semi-arid, savanna forests)

• Generalizing relationships b/n radar backscatter and biomass across forest types is inadvisable – radar 
backscatter from a forest scene is a function of numerous forest structural characteristics (stem density, 
height, stem diameter) as well as other scene properties (soil moisture, slope, etc.) with varying 
correlation to tree biomass.  

• Additional forest structure information, perhaps obtained from lidar or repeat-pass 

interferometry can help to decouple the complex relationships between backscatter and 

forest structural attributes that can obscure the biomass-backscatter signal at higher 

biomass levels.



Sampling design

• Typically the only direct measurements are tree parameters (DBH, height, etc) 
• Estimate biomass/carbon via allometry - very limited portion of the landscape 
• Remote sensing provides a more comprehensive picture of forest conditions across a 

region. 

• In this workshop, we explore sampling approaches that utilize a combination of 
field data and auxiliary information – including wall-to-wall satellite SAR imagery 
and sampled high-resolution (e.g. lidar) in multi-level inventory designs – to 
estimate support forest monitoring programs. 
• Obtaining the required precision for carbon estimation within the limitations of the 

resources



Workshop Objectives:

1. Develop a simulated artificial population to facilitate 
evaluation/comparison of various sampling designs 
& estimators

2. Calculate elementary statistical estimators (simple 
random sampling & post-stratification)

3. Calculate model-assisted and model-based 
estimators with one – two  source(s) of auxiliary data 
(sampled and wall-to-wall)



• The multi-level estimators for forest biomass presented in this workshop 
provide a range of options for design of carbon monitoring programs, 
including:
•Model-assisted approaches requiring probability samples for all levels of 

the design that provide design-unbiased estimators
•Model-based approaches that may be less expensive to implement due 

to the lack of requirement for a probability sample, but at the cost of a 
possibly biased estimator if the model is incorrectly specified.    



Design-based inference

• Traditional forest inventories: Design Based Inference 
• field plots were randomly distributed
• each unit in the population of interest has a positive probability of being selected in a 

sample (“inclusion probability”)
• the population is considered fixed and all uncertainty in the estimation of a population 

parameter (total biomass, volume, etc.) is due to variability between randomly-drawn 
samples from the population. 

• In reality - Probabilities of selection can vary across the population (cost 
reduction or increase the statistical precision of the estimates). 
• Model-assisted inference is a means of using models to improve precision of 

estimates within the design-based inferential paradigm. 



Model-based inference

• Each value from an element in the population is considered a realization of a 
random variable with a specific probability distribution. 
• All population-level values (e.g. total or mean biomass, etc.) are also 

considered random variables. 
• Uncertainty in the estimation of a population parameter is due to randomness 

in the values observed for each population element. 
• The validity of inferences in the model-based paradigm are not dependent 

upon a random (probability) sample
• MB approach can be applied in situations where collecting a sufficiently large 

probability sample of field plots is either too expensive or logistically difficult
• Estimation within small areas
• Remote regions lacking transportation infrastructure 



Design Based vs Model Based 

• Both: 
• offer alternative mechanisms for inference from samples to populations
• are based on a notion of statistical model

• The key difference is whether a statistical model considered 
an unknown construct or a known one.
• Assumptions about an underlying statistical model is what essentially differentiates model-

based approach and design-based approach
• In particular, in a model-based approach can be defined as an approach, where 

statistical model is unknown (hence, the presence of the word "model", as it's 
the focus of discovery). Correspondingly, a design-based approach can be defines 
as one, where statistical model is known and the focus is on a study/experiment 
design.



Use of remote sensing to support carbon surveys: 
Modes of inference

• Results from model-based and model-assisted approaches are difficult to 
compare directly 
• Design-based/model-assisted inference: 
• Advantage – Design-based estimators can be considered unbiased (for large sample sizes) 

regardless of the model that is used 
• In a regional or national forest inventory context, unbiasedness is critical and the design-

based approach may be more appropriate
• Disadvantage – Requirement of adequate probability sample  can be very difficult or costly 

in large remote regions, or small areas 
• Model-based inference:
• Advantage – there is no requirement that the field plots be a probability sample
• Disadvantage – inferences in the model-based context are conditional on the model and 

may produce severely-biased estimators in cases where the model is developed using an 
unrepresentative sample.  



Exercise 1: Simulating an Artificial Population

• Simulation can be a useful approach to gain insight into the statistical properties of 
various survey estimators, especially in the case of somewhat complex, multi-level 
sampling designs 
• In statistics, simulation is used to assess the performance of a method, typically when 

there is a lack of theoretical background. With simulations, the statistician knows and 
controls the truth.
• Advantages: 

• Provides the empirical estimation of sampling distributions
• Studies the misspecification of assumptions in statistical procedures
• Determines the power in hypothesis tests, etc.

• When generating a simulated population, it is desirable to include realistic correlations 
between the response variable (e.g. biomass) and the predictor variables (remote 
sensing metrics) 
• For example, while a multivariate normal distribution can be used to model 

correlation between several variables, we may prefer that these variables have more 
realistic marginal distributions (gamma, exponential, etc.). 



Copula Functions: 

• A copula function is a useful mathematical tool to simulate a population 
with specified multivariate correlation structure and marginal 
distributions
• While an in-depth discussion of copula models is outside the scope of 

this workshop, they essentially allow for expressing multivariate 
distributions in terms of their corresponding univariate marginal 
distributions and a copula function.  



Basics of a copula function

• We want to generate two correlated random variables, x and y
• An easy way would be to sample from a multivariate Gaussian (normal) 

distribution with the specified correlation, but suppose we want to specify non-
Gaussian marginal distributions, f(x) and g(y), for x and y
• Here’s how to use a Gaussian copula to achieve this:
• Generate a, b from a multivariate Gaussian distribution with the desired correlation
• Transform them into uniformly distributed (but still correlated) variables using the 

cumulative Gaussian distribution function ! = Φ a , & = Φ b .
• Transform again to ( = )*+ , , - = .*+ /
• We now have variables with the correct correlation and marginal distributions!



Exercise 1

• In this example, we use a copula function to simulate an artificial population where 
each element has:
• Forest/nonforest classification
• Biomass (Mg/ha)
• Lidar-based measurement (function of lidar-derived height and cover)
• SAR-based measurement (function of HH and HV backscatter)

• Realistic marginal distributions and correlation structure between remote sensing 
measurements and field-based biomass were developed based on an analysis of airborne 
lidar, SAR, and field biomass data from a site in interior Alaska (Andersen et al. 2013). 

• To introduce realistic spatial heterogeneity across the simulated area, a binary random field 
(200 × 200 grid cells) was used to generate an image with a simulated spatial distribution of 
“forest” and “nonforest” areas.  

• The grid cells within the simulated forest/nonforest image were then populated with 
elements from the simulated population generated using the copula function. 

• In this way, each element in the image had a value for forest/nonforest, biomass, lidar, and 
SAR, and the simulated population had realistic marginal distributions, correlation structure 
and spatial pattern of forest cover.    



Complete exercise 1



Exercise 1 results 

Simulated marginal distributions of biomass, lidar-based measurements, SAR-
based measurements, and forest/nonforest classification. Exponential 

distributions used to model biomass, lidar, and SAR variables; Bernoulli 
distribution used to model forest/nonforest class. 



Design-based estimation: Simple random sampling

• Simple random sampling (SRS) represents the most 
fundamental type of design-based sampling and is 
often used as the basis of comparison for more 
complex sampling designs
• Given a probability sample of elements of size n 

from a population of size N, where a forest attribute 
of interest (!") is obtained for each element i, the 
SRS estimator of the population mean is given by 
the sample mean:

%̂&'& = )! = *
+∑-.*

+ !"
the variance estimator is given by:

/0(%̂&'&) = *
+(+2*)∑".*

+ (!" − )!)4



Exercise #2: Assessment of SRS estimator via 
simulation

• The statistical properties of the various estimators can be assessed using the 
simulated population
• At each iteration: 

1. A random sample of elements is drawn from the population 
2. The point estimator !"#$ and the variance estimation are calculated. 
3. Since we know the actual population mean, we can also calculate: 

• The mean percent bias of the point estimator
• The relative standard error of the point estimator
• Coverage probability of the 95% confidence interval for the point estimator



Coverage Probability 

• The coverage probability provides an indication of how reliable (i.e. unbiased) 
the variance estimator is for a parameter. 
• A coverage probability (95% CP) near 95% is an indicator that the 95% 

confidence intervals (CIs) calculated using this variance estimator are reliable 
• Coverage probabilities less than 95% indicate that the calculated 95% CIs are 

giving a falsely precise estimate of uncertainty, while coverage probabilities 
greater than 95% indicate that the 95% CIs obtained from this estimator are 
overly conservative
• The coverage probability of the 95% confidence interval for the point 

estimator: 

!"#$ &̂ − ().)+,) ./ &̂ < & < &̂ + (().34,) ./ &̂ ×100%



Complete Exercise 2



Exercise 3: Post-stratification 

1. Stratify the population into 
(hopefully) homogenous groups 
and 

2. Estimate the inventory 
parameter as a weighted average 
of the strata means 



Complete Exercise 3



• Model-assisted estimators essentially provide a means to use models based on auxiliary 
data (e.g. remote sensing) to improve inferences within the design-based inferential 
framework 
• In other words, random (probability) sampling at all levels in the design is 

the basis for all inference. 
• Model-assisted regression estimators are based on a model of the relationship between 

the forest attribute of interest (e.g. biomass/carbon), Y, and a vector X, of auxiliary 
variables, formulated as:

!" = $ %"; ' + )"
• Where $ %"; ' expresses the mean of Y given observation of X, the ' s are 

parameters to be estimated, and )" is a random residual term. 
• In practice, we don’t observe the entire population but estimate the parameters of the 

regression relationship *' based on a sample of the population. 
• We then utilize this regression model and observed vector of auxiliary variables to predict 

the inventory attribute for a particular unit of the population: +!" = $ %"; *' .

Regression estimators - Design Based / 
Model Assisted 



Regression Estimators 

• A regression estimator for the population mean, "̂#$,& , when a single source of wall-to-wall auxiliary information (e.g. 
satellite SAR) is given by the following expression:

"̂#$,& = &
( ∑*+&

( ,-.+ &
/ ∑0+&

/ (-0 − ,-0)
• Where 4 is the population size, 5 is the sample size, and 670 are predictions from regression model. 

• The first right-hand term in this equation is the sum of the model predictions for the entire population 
• The second right-hand term is a correction term which, when added to the first term, compensates for model bias. 

• The regression estimator can be expressed in different forms, but the above formulation is the easiest form to interpret 
in our context, since the model predictions 670 are based on remotely-sensed imagery or measurements and the second 
term is the mean of the residuals observed at the field plots. 

• We can therefore see that the degree to which the relationship with X explains variability in Y 
will determine the gain in precision from using the regression estimator as opposed to the 
SRS estimator. 
• Post-stratification – where population-level strata proportions are used to improve precision of an 

estimate in the estimation (rather than the design) stage – is a special case of regression estimation 
where the predictors are categorical variables (for example, satellite image-based land cover classes). 



Level 1: Inexpensive measurements using auxiliary data
- Remote sensing plots
- Mapped information

Level 2: Subsample of field plots



Complete Exercise 4



Model Based Approaches

• A few subtle points:
• In the model-based literature you often find the model-based predictor expressed as the sum of the 

sampled units plus the estimated sum of the non-sampled units. Since the difference is very small for a 
large population, in practice we can ignore

• Likewise, since the difference between the sum of the pixel-level predictions and the sum of the pixel-
level predicted means is very small, in practice we can ignore the residual terms  in calculation of 
variance 

• It should be noted that when using internal models developed from a SRS sample at all levels 
of the sampling design, the correction term in the model-assisted estimator goes to zero and 
the model-based estimator will yield virtually the same point estimate and variance 
estimator as the model-assisted estimator. 
• However, the assumptions behind these estimators differ and provide more flexibility in the 

application of the model-based estimator (e.g. application to non-probability samples)
• Care must be taken to ensure that models are based on a representative (if not random) sample to 

reduce bias in the point and variance estimators. 



Model-based approaches

• Following McRoberts et al. (2010) and Saarela et al. (2016), if Y is the random variable (AGB) with a 
mean ! and standard deviation " the observed AGB value at the ith pixel  (#$) can be represented as:

#$ = !$ + '$
• Where '$~) 0, ", , -he mean AGB at the ith pixel is given by !$ = . /0; 2 which is estimated by 
3!$ = . /0; 42 , and /0 is the lidar-based predictor variable at the ith pixel and  42 is the vector of p 
predicted regression coefficients.   

3!56 =
1
)89:;

<
3!$

=>(@!56) = 1
),8

$:$

<
8
B:;

<
CDEF 3!$, 3!B



Model based equations

• The model-based estimate of mean AGB over the entire area is (in matrix notation):
!"# = %&' (&)*

• Where %&' is a N-length column vector where every element equals 1/N, (& is a N × (p+1) matrix of satellite auxiliary 
variables available for each element in the population U. 

• The variance of the model-based mean AGB estimate is given by (in matrix notation):
+ !"# = %&' (&+),(&' %&

• Where +), is the variance-covariance matrix for the regression model parameter estimates )*. For example, in the case of 
p= 2, +), is given by:

-.( 012) 4567( 012, 019)
4567( 019, 012) -.( 019)



Complete exercise 5



Sampling designs with multiple sources of 
auxiliary data 

• In some cases two types of auxiliary information are available, where one (e.g. satellite SAR imagery) 
is collected wall-to-wall and another type of (more expensive and higher resolution) remotely-sensed 
data is collected in a sampling mode. 

• For example, multi-level sampling design may consist of: 
1. A large sample of relatively inexpensive photo-interpreted plots distributed over an area of interest, with 
2. Detailed, relatively expensive, field measurements of the attribute of interest (e.g. tree biomass/carbon) 

collected on a subsample of these photo plots, and 
3. Free, or very inexpensive, satellite image data (SAR) available over the entire area.   

• Depending on application and how the data were collected this type of multi-level sampling design 
can be approached from a model-based or model-assisted inferential standpoint.   



Estimators with two sources of auxiliary information

Level 1: Inexpensive measurements using 
auxiliary data (X")

Level 2: Subsample of inexpensive RS plots (X#)
Level 3: Subsample of expensive field plots (Y)



Sampling designs with multiple sources of 
auxiliary data: Model-assisted

• A model-assisted estimator of mean aboveground tree biomass can be developed using field plot data 
and two sources of auxiliary data in the following manner: 

1. A vector !" of remote sensing-derived variables that are known for all N elements in the population (U) 
and 

2. A vector !# of remote sensing-derived variables that are known only for the elements in the first phase 
sample of $# units, and the inventory attribute of interest,  %&, is only measured on a relatively small 
second-phase subsample of $& photo plots. 

• As a specific example, the !"' variables may represent satellite image data (e.g. SAR HV/HH 
backscatter) that is available wall-to-wall over the entire study area, and the !#' variables represent 
photo plot measurements (average tree height, cover, forest type) that are only available at a 
sample of locations distributed over the area of interest. 



Sampling designs with multiple sources of 
auxiliary data: Model-assisted

• Regression analysis is used to develop a linear model for predicting biomass from 
photo-based measurements:

!"# = % &'#; )' + +'#

• Satellite-derived predictor variables are used to predict biomass using satellite-based 
measurements:

!,# = % &-#; )- + +-#



Complete exercise 6 



Sampling designs with multiple sources of 
auxiliary data: Model-based

• A model-based approach to utilizing auxiliary data collected at multiple levels was developed by Saarela et al. (2016) 
• As in the previous example of model-based estimator, the relationship between the inventory attribute, Y, which is a the 

random variable (AGB) with a mean ! and standard deviation ", the observed mean AGB value at the ith pixel  (#$) can 
be represented as: #$ = & '(; * + ,$ where ,$~.(0, "2). 

• The mean AGB at the ith pixel is given by 4!$ = & '(; * which is estimated by 4!$ = & '(; 5* , where '( is the set of lidar-
based predictor variables available for the second phase sample 62 of the population and  5* is the vector of p predicted 
regression coefficients. 

• This linear model is used to estimate the mean ABG at every pixel in the first phase sample 67 ∶ 4!7$ = & '9(; 5*
• In this hierarchical modelling framework, a second model is developed relating the satellite-based predictor variables :;available over the entire population to the 4!7 predictions available within the first phase sample: 

4!7$ = & :9(; <9 + =7$

where =7$~.(0, "2) and <9 is the vector of model coefficients linking lidar-estimated AGB values and the satellite 
predictor variables estimated by ><9. 



Sampling designs with multiple sources of 
auxiliary data: Model-based

• The model-based estimate of mean AGB over the entire area is
!"# = %&' (&)*+

• The variance of the model-based mean AGB estimate is given by:

,- !"# = %&' (&-!./(&' %&

• Where -!./ is the variance-covariance matrix for the regression model parameter estimates by )*+ given by: 

-). = )0+1 )0+
2343+ (+' (+ 3++ (+' (+ 3+(+' 5+-,65+' (+ (+' (+ 3+

• Where -,6 is the variance-covariance matrix for the regression model parameter estimates ,7 and )0+ = 5+ ,7 − (+)*+ is a 9:
length vector of model residuals. 



Do exercise 7



Toward an optimal sample for model-based estimation: 
Lidar-informed stratified sampling for carbon 
monitoring

• From a model-based standpoint, it can be desirable to collect a sample that is well-distributed across 
the range of predictor variables
• Especially important in fitting nonlinear models 

• One approach is to stratify the population using lidar structural classes (e.g. height, cover), then 
distribute field plots as a stratified random sample 
• Ensures an adequate sample is collected across range of structures
• Introduces additional complexity into estimators since inclusion probabilities will vary 



Application in REDD+ Monitoring, Reporting, and 
Verification (MRV) systems

• The IPCCC has specified good practice as it pertains to the concept of 
REDD+ forest monitoring as inventory design that “neither over- nor 
under-estimates so far as can be judged, and in which uncertainties are 
reduced as far as is practicable.” (GFOI, 2016). 

• This guidance essentially promotes the implementation of monitoring 
programs that maximize precision of estimates, while minimizing bias, 
within the constraints of available resources. 


