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Sampling designs for SAR-based forest survey:
Introduction

* Need: Timely, accurate information on forest carbon stocks and changes
to reduce carbon emissions from the forest sector

* Problem: Traditional forest inventory sampling designs are
difficult/impossible to implement
 Large numbers of well distributed field plots = SSS

e Solution! : New sampling designs using RS data!
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Sampling designs for SAR-based forest survey:
Introduction =

* Need: Timely, accurate information on forest carbon stocks and changes
to reduce carbon emissions from the forest sector

* Problem: Traditional forest inventory sampling designs are
difficult/impossible to implement
 Large numbers of well distributed field plots = SSS

* Solution! : New sampling designs using RS data!
e Updated solution! : New sampling designs using SAR!
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Sampling designs for SAR-based forest survey:
Introduction |
* Sampling designs and statistical modelling/estimation
frameworks are increasingly sought with the following
properties:
1. Understand, quantify, and communicate uncertainty

2. Be efficient!
1. The less field plots the better!

3.Provide flexibility to accommodate a variety of field plot
configurations and remote sensing data acquisition

strategies/resolutions
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Sources of uncertainty in a carbon inventory and
monitoring program

* Three primary sources of variability in the context of a forest carbon
inventory and monitoring system:
1) Measurement error

2) Modelling error

* Allometry
* Relationships with auxiliary information

3) Sampling error
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Measurement error

* Discrepancy between a recorded field measurement and the expected value
of the measurement as defined by documented protocol
* Introduced through inadequate training or lack of adherence to protocol.

* |In practice, measurement error is usually assessed and mitigated through quality
assurance/quality control (QA/QC) procedures

* In many cases, assumed to be minimal in comparison to the measurement itself
(Gregoire and Valentine, 2008, p. 32).
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Modeling error

* |n the context of forest carbon monitoring using remote sensing, modelling error is
introduced in two ways:

1. The use of allometric models to estimate tree-level biomass/carbon using various tree
measurements (diameter at breast height, height, etc.)

2. The use of models relating the remotely-sensed measurement (SAR backscatter, air photo-
derived canopy height and cover, etc.) to the plot-level biomass/carbon

Volume/biomass/carbon
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Modeling error

e Uncertainty due to allometric modelling remains the most difficult source of
error to account for in large scale carbon monitoring programs (Duncanson et
al., 2017).

* Emergence of new technologies, such as terrestrial laser scanning (Calders et al., 2015)
hold promise for improving the efficiency of field measurements & assessment of
uncertainty

* National forest inventory programs often do not explicitly account for this error
in official reports.

- e S OS 1_;"_7

NASA




Estimation of biomass using SAR

* Due to its sensitivity to forest biomass, global coverage, and capability to penetrate cloud
cover, L-band satellite radar has been used extensively as an auxiliary source of data to
support forest monitoring programs across a range of biomes

e L-band dual-polarization (HH, HV) backscatter well-correlated with forest biomass up to
approximately 150 Mg/ha, particularly useful for assessment of low-biomass forests (high-
latitude boreal biome, tropical semi-arid, savanna forests)

* Additional forest structure information, perhaps obtained from lidar or repeat-pass
interferometry can help to decouple the complex relationships between backscatter and

forest structural attributes that can obscure the biomass-backscatter signal at higher
biomass levels.
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Sampling design

* Typically the only direct measurements are tree parameters (DBH, height, etc)
* Estimate biomass/carbon via allometry - very limited portion of the landscape

* Remote sensing provides a more comprehensive picture of forest conditions across a
region.

* In this workshop, we explore sampling approaches that utilize a combination of
field data and auxiliary information — including wall-to-wall satellite SAR imagery
and sampled high-resolution (e.g. lidar) in multi-level inventory designs — to
estimate support forest monitoring programs.

e Obtaining the required precision for carbon estimation within the limitations of the
resources
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Workshop Objectives:

. Develop a simulated artificial population to facilitate
evaluation/comparison of various sampling designs
& estimators

. Calculate elementary statistical estimators (simple
random sampling & post-stratification)

. Calculate model-assisted and model-based
estimators with one —two source(s) of auxiliary data

(sampled and wall-to-wall)




* The multi-level estimators for forest biomass presented in this workshop
provide a range of options for design of carbon monitoring programs,
including:

* Model-assisted approaches requiring probability samples for all levels of
the design that provide design-unbiased estimators

* Model-based approaches that may be less expensive to implement due
to the lack of requirement for a probability sample, but at the cost of a
possibly biased estimator if the model is incorrectly specified.
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Design-based inference

* Traditional forest inventories: Design Based Inference
* field plots were randomly distributed

e each unit in the population of interest has a positive probability of being selected in a
sample (“inclusion probability”)

* the population is considered fixed and all uncertainty in the estimation of a population
parameter (total biomass, volume, etc.) is due to variability between randomly-drawn
samples from the population.

* In reality - Probabilities of selection can vary across the population (cost
reduction or increase the statistical precision of the estimates).

* Model-assisted inference is a means of using models to improve precision of
estimates within the design-based inferential paradigm.

NASA




Model-based inference

e Each value from an element in the population is considered a realization of a
random variable with a specific probability distribution.

* All population-level values (e.g. total or mean biomass, etc.) are also
considered random variables.

* Uncertainty in the estimation of a population parameter is due to randomness
in the values observed for each population element.

* The validity of inferences in the model-based paradigm are not dependent
upon a random (probability) sample

* MB approach can be applied in situations where collecting a sufficiently large
probability sample of field plots is either too expensive or logistically difficult
e Estimation within small areas
 Remote regions lacking transportation infrastructure
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Design Based vs Model Based

e Both:

 offer alternative mechanisms for inference from samples to populations
e are based on a notion of statistical model

* The key difference is whether a statistical model considered
an unknown construct or a known one.

* Assumptions about an underlying statistical model is what essentially differentiates model-
based approach and design-based approach

* In particular, in a model-based approach can be defined as an approach, where
statistical model is unknown (hence, the presence of the word "model", as it's
the focus of discovery). Correspondingly, a design-based approach can be defines
as one, where statistical model is known and the focus is on a study/experiment
design.
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Use of remote sensing to support carbon surveys:
Modes of inference

e Results from model-based and model-assisted approaches are difficult to
compare directly

* Design-based/model-assisted inference:

* Advantage — Design-based estimators can be considered unbiased (for large sample sizes)
regardless of the model that is used

* |In a regional or national forest inventory context, unbiasedness is critical and the design-
based approach may be more appropriate

* Disadvantage — Requirement of adequate probability sample can be very difficult or costly
in large remote regions, or small areas

* Model-based inference:

* Advantage — there is no requirement that the field plots be a probability sample

* Disadvantage — inferences in the model-based context are conditional on the model and

may produce severely-biased estimators in cases where the model is developed using an
unrepresentative sample.
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Exercise 1: Simulating an Artificial Population

* Simulation can be a useful approach to gain insight into the statistical properties of
various survey estimators, especially in the case of somewhat complex, multi-level
sampling designs

* |n statistics, simulation is used to assess the performance of a method, typically when
there is a lack of theoretical background. With simulations, the statistician knows and
controls the truth.

* Advantages:

* Provides the empirical estimation of sampling distributions

» Studies the misspecification of assumptions in statistical procedures
* Determines the power in hypothesis tests, etc.

 When generating a simulated population, it is desirable to include realistic correlations
between the response variable (e.g. biomass) and the predictor variables (remote
sensing metrics)

* For example, while a multivariate normal distribution can be used to model
correlation between several variables, we may prefer that these variables have more
realistic marginal distributions (gamma, exponential, etc.).
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Copula Functions:

e A copula function is a useful mathematical tool to simulate a population
with specified multivariate correlation structure and marginal
distributions

* While an in-depth discussion of copula models is outside the scope of
this workshop, they essentially allow for expressing multivariate
distributions in terms of their corresponding univariate marginal
distributions and a copula function.
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Basics of a copula function

 We want to generate two correlated random variables, x and y

* An easy way would be to sample from a multivariate Gaussian (normal)
distribution with the specified correlation, but suppose we want to specify non-
Gaussian marginal distributions, f(x) and g(y), for x and y

* Here’s how to use a Gaussian copula to achieve this:
* Generate a, b from a multivariate Gaussian distribution with the desired correlation

* Transform them into uniformly distributed (but still correlated) variables using the
cumulative Gaussian distribution function u = ®(a),v = ®(b).

e Transformagaintox = F~1(u),y = ¢ 1(v)
* We now have variables with the correct correlation and marginal distributions!
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Exercise 1

* |[n this example, we use a copula function to simulate an artificial population where
each element has:
* Forest/nonforest classification
* Biomass (Mg/ha)
 Lidar-based measurement (function of lidar-derived height and cover)
* SAR-based measurement (function of HH and HV backscatter)

* Realistic marginal distributions and correlation structure between remote sensing
measurements and field-based biomass were developed based on an analysis of airborne
lidar, SAR, and field biomass data from a site in interior Alaska (Andersen et al. 2013).

* To introduce realistic spatial heterogeneity across the simulated area, a binary random field
(200 x 200 grid cells) was used to generate an image with a simulated spatial distribution of

“forest” and “nonforest” areas.

* The grid cells within the simulated forest/nonforest image were thenTJooquated with
elements from the simulated population generated using the copula function.

* In this way, each element in the image had a value for forest/nonforest, biomass, lidar, and
SAR, and the simulated population had realistic marginal distributions, correlation structure
and spatial pattern of forest cover.
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Complete exercise 1



Exercise 1 results

Simulated marginal distributions of biomass, lidar-based measurements, SAR-
based measurements, and forest/nonforest classification. Exponential
distributions used to model biomass, lidar, and SAR variables; Bernoulli
distribution used to model forest/nonforest class.

Biomass Lidar-based measurement SAR-based measurement Forest/Nonforest classification
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Design-based estimation: Simple random sampling

e Simple random sampling (SRS) represents the most
fundamental type of design-based sampling and is
often used as the basis of comparison for more
complex sampling designs

* Given a probability sample of elements of size n
from a population of size N, where a forest attribute
of interest (Y;) is obtained for each element i, the
SRS estimator of the population mean is given by
the sample mean:

A = 1
Hsps =Y =~ j=1Yi
the variance estimator is given by:
1

I7(ﬁSRS) — m ?:1(Yi — 7)2
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Exercise #2: Assessment of SRS estimator via
simulation

* The statistical properties of the various estimators can be assessed using the
simulated population

e At each iteration:

1. Arandom sample of elements is drawn from the population
2. The point estimator mean and the variance estimation are calculated.

3. Since we know the actual population mean, we can also calculate:
* The mean percent bias of the point estimator
* The relative standard error of the point estimator

» Coverage probability of the 95% confidence interval for the point estimator
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Coverage Probability

* The coverage probability provides an indication of how reliable (i.e. unbiased)
the variance estimator is for a parameter.

* A coverage probability (95% CP) near 95% is an indicator that the 95%
confidence intervals (Cls) calculated using this variance estimator are reliable

* Coverage probabilities less than 95% indicate that the calculated 95% Cls are
giving a falselg/gorecise estimate of uncertainty, while coverage probabilities
greater than 95% indicate that the 95% Cls obtained from this estimator are
overly conservative

* The coverage probability of the 95% confidence interval for the point
estimator:

Prob (ﬁ = Zo.ozs),/V(ﬁ) <u<p+ Z(0.975),/V(ﬁ)> x100%
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Complete Exercise 2



Exercise 3: Post-stratification

1. Stratify the population into
(hopefully) homogenous groups
and

2. Estimate the inventory
parameter as a weighted average
of the strata means
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Complete Exercise 3



Regression estimators - Design Based / =
Model Assisted

* Model-assisted estimators essentially provide a means to use models based on auxiliary
data (e.g. remote sensing) to improve inferences within the design-based inferential
framework

* In other words, random (probability) sampling at all levels in the design is
the basis for all inference.

* Model-assisted regression estimators are based on a model of the relationship between
the forest attribute of interest (e.g. biomass/carbon), Y, and a vector X, of auxiliary
variables, formulated as:

Yi=fXiB) +&
* Where f(X;; B) expresses the mean of Y given observation of X, the s are
parameters to be estimated, and ¢; is a random residual term.

* In practice, we don’t observe the entire population but estimate the parameters of the
regression relationship f§ based on a sample of the population.

* We then utilize this regression model and observed vector of auxiliary variables to predict
the inventory attribute for a particular unit of the population: Y; = f(Xl-; ,6’).
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Regression Estimators

* A regression estimator for the Fopglation mean, fLnq 1 ,» When a single source of wall-to-wall auxiliary information (e.g.
satellite SAR) is given by the following expression:

N _ 1 N ~ 1 n A~
Aman = 5 Lj=1 Yt - 2i=1 (Vi = Vi)

* Where N is the population size, n is the sample size, and Y; are predictions from regression model.
* The first right-hand term in this equation is the sum of the model predictions for the entire population
* The second right-hand term is a correction term which, when added to the first term, compensates for model bias.

* The regression estimator can be expressed in different forms, but the above formulation is the easiest form to interpret
in our context, since the model predictions Y; are based on remotely-sensed imagery or measurements and the second
term is the mean of the residuals observed at the field plots.

* We can therefore see that the degree to which the relationship with X explains variability in'Y
will determine the gain in precision from using the regression estimator as opposed to the
SRS estimator.

* Post-stratification — where Fopulation—level strata ;oroportions are used to improve precision of an
S

estimate in the estimation (rather than the design tage — is a special case of regression estimation
where the predictors are categorical variables (for example, satellite image-based land cover classes).




Level 1: Inexpensive measurements using auxiliary data

- Remote sensing plots
- Mapped information

Level 2: Subsample of field plots

§
3
a

Auxiliary metrics
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Model Based Approaches

* A few subtle points:

* |n the model-based literature you often find the model-based predictor expressed as the sum of the
sampled units plus the estimated sum of the non-sampled units. Since the difference is very small for a

large population, in practice we can ignore

» Likewise, since the difference between the sum of the pixel-level predictions and the sum of the pixel-
level predicted means is very small, in practice we can ignore the residual terms in calculation of

variance

* It should be noted that when using internal models developed from a SRS sample at all levels
of the sampling design, the correction term in the model-assisted estimator goes to zero and
the model-based estimator will yield virtually the same point estimate and variance
estimator as the model-assisted estimator.

* However, the assumptions behind these estimators differ and provide more flexibility in the
application of the model-based estimator (e.g. application to non-probability samples)

* Care must be taken to ensure that models are based on a representative (if not random) sample to
reduce bias in the point and variance estimators.
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Model-based approaches

* Following McRoberts et al. (2010) and Saarela et al. (2016), if Y is the random variable (AGB) with a
mean u and standard deviation o the observed AGB value at the it" pixel (y;) can be represented as:

Vi = Ui T €
» Where €;~N(0, 02), the mean AGB at the ith pixel is given by y; = f(X;; B) which is estimated by

= f(X,-; ﬁ), and X; is the lidar-based predictor variable at the it" pixel and B is the vector of p
predicted regression coefficients.
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Model based equations

* The model-based estimate of mean AGB over the entire area is (in matrix notation):

—~ ! D
Hy = WwXup
« Where ty is a N-length column vector where every element equals 1/N, Xy is a N x (p+1) matrix of satellite auxiliary
variables available for each element in the population U.

* The variance of the model-based mean AGB estimate is given by (in matrix notation):
— I/ I/
V(aw) = wXuVpXyly
 Where VB is the variance-covariance matrix for the regression model parameter estimates ﬁ For example, in the case of
p= 2, Vﬁ is given by:

A‘?(?O)A C/O\V(BAO; ,531)
Cov(f1,Bo) V(,Bﬂ
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Sampling designs with multiple sources of
auxiliary data

* In some cases two types of auxiliary information are available, where one (e.g. satellite SAR imagery)
is collected wall-to-wall and another type of (more expensive and higher resolution) remotely-sensed
data is collected in a sampling mode.

* For example, multi-level sampling design may consist of:
1. A large sample of relatively inexpensive photo-interpreted plots distributed over an area of interest, with

2. Detailed, relatively expensive, field measurements of the attribute of interest (e.g. tree biomass/carbon)
collected on a subsample of these photo plots, and

3. Free, or very inexpensive, satellite image data (SAR) available over the entire area.

* Depending on application and how the data were collected this type of multi-level sampling design
can be approached from a model-based or model-assisted inferential standpoint.
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Estimators with two sources of auxiliary information

e Level 1: Inexpensive measurements using
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Sampling designs with multiple sources of
auxiliary data: Model-assisted

* A model-assisted estimator of mean aboveground tree biomass can be developed using field plot data
and two sources of auxiliary data in the following manner:

1. A vector X; of remote sensing-derived variables that are known for all N elements in the population (U)
and

2. A vector X; of remote sensing-derived variables that are known only for the elements in the first phase
sample of n; units, and the inventory attribute of interest, Y,, is only measured on a relatively small
second-phase subsample of n, photo plots.

* As a specific example, the Xyj; variables may represent satellite image data (e.g. SAR HV/HH
backscatter) that is available wall-to-wall over the entire study area, and the X;; variables represent
photo plot measurements (average tree height, cover, forest type) that are only available at a
sample of locations distributed over the area of interest.




Sampling designs with multiple sources of
auxiliary data: Model-assisted -

e Regression analysis is used to develop a linear model for predicting biomass from
photo-based measurements:

Y1i = f(Xq3; 1) + &1i

 Satellite-derived predictor variables are used to predict biomass using satellite-based
measurements:

Yyi = f(Xui; Bu) + €y
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Sampling designs with multiple sources of
auxiliary data: Model-based

* A model-based approach to utilizing auxiliary data collected at multiple levels was developed by Saarela et al. (2016)

* Asin the previous example of model-based estimator, the relationship between the inventory attributeﬁ Y, which is a the
random variable (AGB) with a mean u and standard deviation o, the observed mean AGB value at the i pixel (¥;) can
be represented as: ¥; = f(X;; B) + €; where ;~N(0,52).

» The mean AGB at the it pixel is given by fi; = f(X;; B) which is estimated by [i; = f(Xi; ﬁ), where X; is the set of lidar-

based predictor variables available for the second phase sample n, of the population and p is the vector of p predicted
regression coefficients.

 This linear model is used to estimate the mean ABG at every pixel in the first phase samplen, : fi;; = f(Xli; ﬁ)

* In this hierarchical modelling framework, a second model is developed r_elatin%the satellite-based predictor variables Z
available over the entire population to the fi; predictions available within the first phase sample:

i = f(Z1; a1) + wq;

where w;;~N(0,0%) and a; is the vector of model coefficients linking lidar-estimated AGB values and the satellite
predictor variables estimated by a; .




Sampling designs with multiple sources of
auxiliary data: Model-based

* The model-based estimate of mean AGB over the entire area is

—~ ! A~
Hy = tyZyty
* The variance of the model-based mean AGB estimate is given by:

70—\ _ ./ !
V(ag) = wZyVgZy
* Where Vg is the variance-covariance matrix for the regression model parameter estimates by @ given by:

~T ~
wqw1q

V. =
@ M-q-1

(21Z21)7'+(Z1Z,)7'Z1 X1V X1|21(2121) 7

* Where Vf? is the variance-covariance matrix for the regression model parameter estimates f and @, = X1 — Z1Q 1 isan,
length vector of model residuals.
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Toward an optimal sample for model-based estimation:
Lidar-informed stratified sampling for carbon
monitoring

* From a model-based standpoint, it can be desirable to collect a sample that is well-distributed across
the range of predictor variables

e Especially important in fitting nonlinear models

* One approach is to stratify the population using lidar structural classes (e.g. height, cover), then
distribute field plots as a stratified random sample

* Ensures an adequate sample is collected across range of structures
* Introduces additional complexity into estimators since inclusion probabilities will vary




Application in REDD+ Monitoring, Reporting, and
Verification (MRV) systems

* The IPCCC has specified good practice as it pertains to the concept of
REDD+ forest monitoring as inventory design that “neither over- nor
under-estimates so far as can be judged, and in which uncertainties are
reduced as far as is practicable.” (GFOI, 2016).

* This guidance essentially promotes the implementation of monitoring
programs that maximize precision of estimates, while minimizing bias,
within the constraints of available resources.
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