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7.1  Background 
International efforts to reduce carbon emissions 

from the forest sector have created increased de-
mands on the capabilities of national and regional 
forest monitoring systems to provide timely, accurate 
information on forest carbon stocks and changes due 
to deforestation and degradation (GFOI 2016). At the 
same time, it is recognized that traditional forest inven-
tory sampling designs, which typically rely heavily on 
large numbers of field plot measurements distributed 
over a region, are difficult or impossible to implement 
in many remote, underdeveloped regions of the world 
(e.g., high latitudes, tropics) due to logistical complexity 
and/or high costs. For this reason, there is increasing 
interest in the development of new sampling designs 
for the monitoring of forest biomass/carbon that can 
efficiently utilize the low-cost mapped information on 
forest structure (biomass/carbon), at the global scale, 
that is increasingly available with the recent and future 
launches of several satellite SAR missions, such as Ad-
vanced Land Observation Satellite (ALOS) Phased Array 
type L-band Synthetic Aperture Radar (PALSAR) (Hoek-
man et al. 2010) and  ALOS-2 PALSAR-2 (JAXA 2014). 
For this reason, sampling designs and statistical mod-
elling/estimation frameworks are increasingly sought 
with the following properties: 

(1) Provide the basis for sound, statistically-rigorous as-
sessment of uncertainty (e.g., Gregoire et al. 2016)

(2) Use a fewer number of expensive field plots and 
more extensive, efficient use of less-expensive 
remotely-sensed information (including airborne 
light detection and radar (lidar), satellite-based 
L-band SAR)

(3) Provide flexibility to accommodate a variety of 
field plot configurations and remote sensing data 
acquisition strategies/resolutions

This chapter discusses several important consider-
ations in the assessment of uncertainty in forest bio-
mass surveys and how these considerations should fac-
tor into the design and implementation of a sampling 
design for biomass inventory and monitoring using 
L-band spaceborne SAR in remote regions. 

7.1.1  SOURCES OF UNCERTAINTY IN A 
CARBON INVENTORY AND MONITORING 
PROGRAM

There are three primary sources of variability in the 
context of a forest carbon inventory and monitoring 
system: (1) measurement error, (2) modelling error, 
and (3) sampling error. In making the choice of a field 
measurement protocol, sampling design, and infer-
ential framework, all three types of errors should be 
considered. In the context of carbon monitoring pro-

grams, measurement error—or discrepancy between 
a recorded field measurement and the expected value 
of the measurement as defined by documented proto-
col—is often introduced through inadequate training 
or lack of adherence to protocol. In practice, measure-
ment error is usually assessed and mitigated (if possi-
ble) through quality assurance/quality control (QA/QC) 
procedures (that can be quite costly to implement), and 
otherwise is assumed to be minimal in comparison to 
the measurement itself (Gregoire & Valentine 2008). 

In the context of forest carbon monitoring using 
remote sensing, modelling error is introduced in two 
ways: (1) the use of allometric models to estimate 
tree-level biomass/carbon using various tree measure-
ments (diameter at breast height, height, etc.), and (2) 
the use of models relating the remotely-sensed mea-
surement (SAR backscatter, air photo-derived canopy 
height and cover, etc.) to the plot-level biomass/carbon. 

7.1.2  ALLOMETRIC MODELS FOR BIOMASS

Given the difficulty of measuring aboveground 
tree biomass directly, virtually all carbon monitoring 
programs rely upon allometric models to convert tree 
measurements obtained in a forest inventory (e.g., 
height, stem diameter) to aboveground biomass (or 
carbon) estimates. Due to the relatively small samples 
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used to develop these models, and the wide range of 
variability in wood density and height/diameter re-
lationships across the geographic range of trees, it is 
widely acknowledged that lack-of-fit in the allometric 
models used to estimate biomass can contribute sig-
nificantly to the true overall error budget for carbon 
monitoring—although national forest inventory pro-
grams often do not explicitly account for this error in 
official reports. While several recent efforts have made 
progress in improving the quality of allometric models 
used in national- or regional-scale carbon monitoring 
programs (Chojnacky et al. 2014, Chave et al. 2014) and 
the emergence of new technologies, such as terrestrial 
laser scanning (Calders et al. 2015) hold promise for 
improving the efficiency of field measurements, uncer-
tainty due to allometric modelling remains the most dif-
ficult source of error to account for in large scale carbon 
monitoring programs (Duncanson et al. 2017). 

7.1.3  ESTIMATION OF BIOMASS USING SAR 

Due to its sensitivity to forest biomass, global 
coverage, and capability to penetrate cloud cover, 
L-band satellite radar has been used extensively as 
an auxiliary source of data to support forest moni-
toring programs across a range of biomes (Ryan et al. 
2011, Hoekman et al. 2010). L-band dual-polarization 
(HH, HV) backscatter has been shown to be well-cor-
related with forest biomass up to approximately 150 
Mg/ha, lending it particular utility in assessing forest 
biomass levels in low-biomass forests character-
istic of high-latitude boreal forest biome as well as 
semi-arid, savanna forests of the tropics (Atwood et 
al. 2014, Tanase et al. 2014). However, it has been 
noted that generalizing relationships between L-band 
radar backscatter and biomass across forest types 
is inadvisable since radar backscatter from a forest 
scene is a function of numerous forest structural 
characteristics (stem density, height, stem diame-
ter), as well as other scene properties (soil moisture, 
slope, etc.) with varying correlation to tree biomass 
(Woodhouse et al. 2012). Although the L-band back-
scatter signal saturates at higher biomass levels (>150 
Mg/ha), limiting its usefulness as a stand-alone cor-
relate for biomass in high-biomass forests, there is 
evidence to suggest that including additional forest 
structure information, perhaps obtained from lidar 

or repeat-pass interferometry (Treuhaft and Sique-
ira 2000), can help to decouple the complex rela-
tionships between backscatter and forest structural 
attributes that can obscure the biomass-backscatter 
signal at higher biomass levels (Joshi et al. 2017). 

Once the measurement protocols and modelling 
frameworks have been established in a forest carbon 
monitoring system, the next step is determining the 
proper sampling design to obtain the required pre-
cision for carbon estimators within the limitations 
of the available resources. Although it is typical to 
only be able to directly measure trees (and estimate 
biomass via allometry) on a very limited portion of 
the landscape—leading the third source of variabil-
ity in carbon estimates, sampling error—the use 
of remote sensing provides a means of obtaining a 
much more comprehensive picture of forest structure 
across an area of interest. This chapter explores sam-
pling approaches that utilize a combination of field 
data and auxiliary information—including wall-to-
wall satellite SAR imagery and sampled high-resolu-
tion (e.g., lidar) in multilevel inventory designs—to 
estimate support forest monitoring programs. 

7.2  Use of Remote Sensing 
to Support Carbon Surveys
7.2.1  MODES OF INFERENCE

Traditionally, forest inventory and monitoring 
programs have been based on the principles of de-
sign-based inference, where field plots were distribut-
ed as a probability sample, and each unit in the pop-
ulation of interest has a positive probability of being 
selected in a sample. In design-based sampling, the 
population is considered fixed, and all uncertainty 
in the estimation of a population parameter (total 
biomass, volume, etc.) is due to variability between 
randomly drawn samples from the population. 
Depending on the objectives of the study or inven-
tory, probabilities of selection can vary across the 
population to reduce costs or increase the statistical 
precision of the estimates. For example, in stratified 
sampling, the units of the population can be grouped 
into homogeneous strata and the population-level 
estimate is calculated as a weighted average of the 
stratum-level estimates with the weights based on 

stratum sizes. Model-assisted inference is a means of 
using lower-cost auxiliary data (e.g., maps, imagery, 
photo plots) and a model describing the relationship 
between auxiliary measurements and inventory pa-
rameters to improve precision of estimates within the 
design-based inferential paradigm. In model-assist-
ed approaches, data at every level are still collected 
as probability samples, but the number of field plots 
required to achieve a given level of precision can be 
reduced significantly (compared to designs using only 
field plots) if there is a strong correlation between 
auxiliary data and inventory parameters. 

In contrast, model-based inference is usually based 
on the so-called superpopulation model, where each 
value from an element in the population is con-
sidered a realization of a random variable with a 
specific probability distribution. Therefore, all pop-
ulation-level values (e.g., total or mean biomass, 
etc.) are also considered random variables. In the 
model-based inferential paradigm, the uncertainty in 
the estimation of a population parameter is due to 
randomness in the values observed for each popu-
lation element. Because the validity of inferences in 
the model-based paradigm are not dependent upon 
a random (probability) sample, it can be applied in 
situations where collecting a sufficiently large proba-
bility sample of field plots is either too expensive or 
logistically difficult, such as estimation within small 
areas or remote regions lacking transportation infra-
structure. 

Due to very different underlying assumptions, 
the results from model-based and model-assisted 
approaches are difficult to compare directly. The ad-
vantage of model-based approaches is that there is 
no requirement that the field plots be a probability 
sample, while this is a requirement of model-assisted 
approaches. However, inferences in the model-based 
context are conditional on the model and may pro-
duce severely biased estimators in cases where the 
model is developed using an unrepresentative sam-
ple. In contrast, design-based (including model-as-
sisted) estimators can, from a practical standpoint, 
be considered unbiased (for reasonably large sample 
sizes) regardless of the model that is used. Obviously, 
in a regional or national forest inventory and moni-
toring context—where estimates are often used to 
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support forest policy decisions and fulfill Reducing 
Emissions from Deforestation and forest Degradation 
(REDD+) and Net Green House Gas (NGHG) moni-
toring and reporting requirements—the quality of 
unbiased data is critical and the model-assisted ap-
proach may be more appropriate. Model-based ap-
proaches may be more appropriate for assessment of 
remote, or small, inadequately sampled areas, or to 
support tactical-level forest management decisions. 

7.3  Exercise 1: Simulating 
an Artificial Population 

Simulation can be a useful approach to gain in-
sight into the statistical properties of various survey 
estimators, especially in the case of somewhat com-
plex, multi-level sampling designs (Ene et al. 2016, 
Saarela et al. 2017). Here, simulation implemented in 
the R statistical software package is used to demon-
strate the implementation of several SAR-assisted, 
multi-level sampling designs. Proficiency in R pro-
gramming is not required to carry out the exercises, 
since the scripts can be run by simply copying and 
pasting the code at the R command line. 

When generating a simulated population, it is de-
sirable to include realistic correlations between the 
response variable (e.g., biomass) and the predictor 
variables used in the inventory. While a multivariate 
normal distribution can be used to model correlation 
between several variables, it may also be important 
for the purposes of gaining insight into the properties 
of the point and variance estimators, as well as im-
plications for sample size and modelling effort, that 

these variables have more realistic marginal distribu-
tions (gamma, exponential, etc.). A copula function is 
a useful mathematical tool to simulate a population 
with specified multivariate correlation structure and 
marginal distributions (Ene et al. 2012, Nelsen 2006). 
While an in-depth discussion of copula models is out-
side the scope of this chapter, they essentially allow for 
expressing multivariate distributions in terms of their 
corresponding univariate marginal distributions and a 
copula function. In this exercise, a copula function is 
used to simulate a large population where each ele-
ment has a value for forest/nonforest classification, 
biomass (Mg/ha), a lidar-based measurement (func-
tion of lidar-derived height and cover), and a SAR-
based measurement (function of HH and HV backscat-
ter). Realistic marginal distributions and correlation 
structure between remote sensing measurements 
and field-based biomass were developed based on an 
analysis of airborne lidar, SAR, and field biomass data 
from a site in interior Alaska (Andersen et al. 2013). In 
order to introduce realistic spatial heterogeneity across 
the simulated area, a binary random field (150 × 150 
grid cells) generated an image with a realistic simulated 
spatial distribution of “forest” and “nonforest” areas. 
The grid cells within the simulated forest/nonforest im-
age were then populated with elements from the simu-
lated population generated using the copula function. 
In this way, each element in the image had a value for 
forest/nonforest, biomass, lidar, and SAR, and the sim-
ulated population had realistic marginal distributions, 
correlation structure, and long-range spatial heteroge-
neity (Figs. 7.1 and 7.2).  

7.3.1  DESIGN-BASED ESTIMATION

7.3.1.1  Simple Random Sampling

Simple random sampling (SRS) represents the 
most fundamental type of design-based sampling 
and is often used as the basis of comparison for more 
complex sampling designs. Given a probability sam-
ple of elements of size n from a population of size N, 
where a forest attribute of interest (Yi) is obtained for 
each element i, the SRS estimator of the population 
mean is given by the sample mean:

 µ̂SRS = µ̂ma ,1=Y =
1
n

Yij=1
n∑  (7.1)

and the variance estimator is given by

 V̂ µ̂SRS( )= 1
n n−1( )

Yi−Y( )2i=1
n∑  (7.2)

7.3.3  POST-STRATIFICATION

The precision of an SRS estimator can be increased 
at the estimation stage if the population can be strat-
ified in such a way that plots with similar values for 
an inventory parameter are grouped together in the 
same class or stratum, a technique called post-strat-
ification. In post-stratification, the estimator of the 
population mean is given by

 µ̂PS = Wh yhh∑  (7.3)

with a variance estimator:

V̂ µ̂PS( )= 1
n

( WhnhV ( yhh∑ )+ 1

n2
1−Wh( )nhV ( yh )  ,h∑  (7.4)

where Wh is the proportion of the population in 
stratum h (i.e., Wh = ) and V ( yh )) is the variance of 
the mean of plots in stratum h. 

Table 7.1 Description of strengths, weaknesses and main applications of the models addressed in this chapter.

INTERFERENCE TYPE DESCRIPTION STRENGTHS WEAKNESSES APPLICATION

Design-based

All data collected as a probability sample, 
Population is considered fixed; uncertainty 
is due to variability between randomly-
drawn samples

Simple, well- documented designs and 
formulae for point and variance estimators; 
design-unbiased estimation; reliable 
confidence intervals 

Requirement of probability sample may be 
logistically infeasible to cost-prohibitive in 
some cases; Less efficient if strongly-
correlated auxiliary data is available

National forest inventories, 
National Greenhouse Gas inventories

Model-assisted

Uses lower-cost auxiliary data and models 
to improve precision of estimates within the 
design-based paradigm; data at every level 
are still collected as probability samples

Increased efficiency (fewer field plots for 
given level of precision) and lower cost 
if there is a strong correlation between 
auxiliary data and inventory parameters

Probability samples required at every level 
of the design; Form of estimators potentially 
very complex; Only design-unbiased for 
large samples;  confidence intervals less 
reliable for small samples

REDD+ applications,
NFI in remote regions

Model-based

Population values and parameters are 
random variables. Uncertainty due to 
randomness in the values observed for each 
population element. 

Probability sampling not required; 
potentially much less expensive to 
implement than design-based approaches

Not design-unbiased; Estimators based on 
models developed with unrepresentative 
samples can be severely biased

Small area estimation; Tactical forest 
management; Inventory over large, remote 
regions lacking transportation infrastructure
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7.4  Exercise 2: Properties of 
Estimators via Simulation

The statistical properties of the various estimators 
can be assessed using the simulated population de-
veloped previously. At each iteration, a simple ran-
dom sample of n elements is drawn from the pop-
ulation, and the point estimator μ and the variance 
estimator V(μ) are calculated.

Given that we know the actual population mean 
μ, we can then calculate the mean percent bias of the 
point estimator

 µ̂iterations−µ( ) µ×100%  , (7.5)

the relative standard error of the point estimator 

 SD µ̂iterations( ) µ̂iterations×100%  , (7.6)

and the empirical coverage probability of the 95% 
confidence interval for the point estimator: 

  Prob µ̂−t 0.025,n2−2p( ) V̂ µ̂( )<µ<µ̂+ t 0.975,n2−2p( ) V̂ µ̂( )⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
×100%  . (7.7)

The empirical coverage probability provides an in-
dication of how reliable (i.e., unbiased) the variance 
estimator is for a parameter. An empirical coverage 
probability (95% CP) near 95% is an indicator that the 
95% confidence intervals (CIs) calculated using this 
estimator are reliable. Empirical coverage probabili-
ties of less than 95% indicate that the calculated 95% 
CIs are giving a falsely precise estimate of uncertainty, 
while coverage probabilities greater than 95% indi-
cate that the 95% CIs obtained from this estimator are 
overly conservative. 

When the SRS estimator is assessed via simula-
tion, the results indicate the increase in precision due 
to increasing sample size, as well as the improvement 
in 95% coverage probability with increasing sample 
size (it is well-documented that variance estimators 
can be biased for small samples drawn from high-
ly-skewed populations). 

When using a forest/non-forest layer for 
post-stratification of the SRS sample, the precision is 
increased a small amount. 

7.4.1  REGRESSION ESTIMATORS

Model-assisted estimators essentially provide a 
means to use models based on auxiliary data (e.g., 
remote sensing) to improve inferences within the 

Forest/Nonforest Lidar-based Data

SAR-based Data Tree Biomass

Figure 7.2 Simulated marginal distributions of biomass, lidar-based measurements, SAR-based 
measurements, and forest/nonforest classification. Exponential distributions used to model 
biomass, lidar, and SAR variables; Bernoulli distribution used to model forest/non-forest class. 

Table 7.2 Correlation matrix for a simulated population

Biomass Lidar-based SAR-based Forest/Nonforest

Biomass 1.00 0.88 0.66 0.36

Lidar-based 0.88 1.00 0.56 0.30

SAR-based 0.66 0.56 1.00 0.15

Forest/Nonforest 0.36 0.30 0.15 1.00

Figure 7.1 Simulated population with biomass, forest/nonforest, lidar-based measurements, and 
SAR-based measurements. Simulated plots (red) are shown overlaid on tree biomass image.
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design-based inferential framework (McRoberts 
et al. 2014). In other words, random (probability) 
sampling at all levels in the design is the basis for all 
inference. Model-assisted regression estimators are 
based on a model of the relationship between the 
forest attribute of interest (e.g., biomass/carbon), Y, 
and a vector X, of auxiliary variables, formulated as,

 Yi = f(Xi ; β) + εi  , (7.8)

where f(Xi;β) expresses the mean of Y given observa-
tion of X, β are the parameters to be estimated, and 
εi is a random residual term. In practice, the entire 
population is not observed, but the parameters of 
the regression relationship β̂  based on a sample 
of the population is estimated. Then this regression 
model and observed vector of auxiliary variables are 
used to predict the inventory attribute for a particular 
unit of the population:

 Ŷi = f X i ;β̂( )  . (7.9)

A regression estimator for the population mean, 
µ̂ma ,1  when a single source of wall-to-wall auxiliary 
information (e.g., satellite SAR or spectral imagery) is 
given by the following expression:

     µ̂ma ,1=
1
N

Ŷi+
1
n

Yi−Ŷi( )i=1
n∑j=1

N∑   , (7.10)

where N is the population size, n is the sample size, 
and Ŷi  is obtained from Eq. 7.9 (Särndal et al. 1992). 
The first right-hand term in this equation is the sum 
of the model predictions for the entire population, 
and the second right-hand term is a correction term 
which, when added to the first term, compensates 
for model bias. The regression estimator can be 
expressed in different forms, but the above formu-
lation is the easiest form to interpret in our context, 
since the model predictions Ŷi  are based on remotely 
sensed imagery or measurements and the second 
term is the mean of the residuals observed at the 
field plots. For n much smaller than N, an approxi-
mately unbiased estimator of the corresponding vari-
ance is formulated as:

 V̂ µ̂ma ,1( )= 1
n n−1( )

Yi−Ŷi( )2i=1
n∑   . (7.11)

The advantage of the regression estimator over the 
SRS estimator is that the variance estimator is based 
on residuals, Yi−Ŷi  rather than differences,  Yi−Y , 
between observations and their mean. Therefore, it 
can be seen that the degree to which the relationship 
with X explains variability in Y will determine the gain 
in precision from using the regression estimator as 
opposed to the SRS estimator. It should be noted that 
post-stratification—where population-level stra-
ta proportions are used to improve precision of an 
estimate in the estimation (rather than the design) 
stage—is a special case of regression estimation 
where the predictors are categorical variables (for 
example, satellite image-based landcover classes). 

7.5  Exercise 3: Simulation-
Based Assessment of 
Model-Assisted Estimator 
With a Single Source Of 
Auxiliary Data

The statistical properties of the model-assisted 
estimator with one source of auxiliary data (assumed 
to be collected wall-to-wall, such as SAR imagery) 
and various sample sizes for field plots (Table 7.5). 
It is evident from these results that there is a small 
reduction in the standard error (in comparison to the 
SRS estimator) through including a single auxiliary 

that is moderately correlated with biomass (Man-
dallaz et al. 2013). It is noted that the sampling distri-
bution of this variance estimator is bell-shaped, but 
with heavier tails than a normal distribution. There-
fore, this approach was followed and confidence in-
tervals calculated using a student’s t-distribution with 
n2 – 2p degrees of freedom. 

7.5.1  MODEL-BASED APPROACHES

Following McRoberts et al. (2010) and Saarela et al. 
(2016) if Y is the random variable (Above Ground Bio-
mass (AGB)) with a mean μ and standard deviation σ, 
the observed AGB value at the ith pixel (yi) can be rep-
resented as 

 yi = μi + Єi  , (7.12)

where Єi~N(0,σ2). The mean AGB at the ith pixel is then 
given by

 μi = f(Xi;β)  ,  (7.13)

which is estimated by

 µ̂i = f Xi ;β̂( )  , (7.14)

where Xi is the lidar-based predictor variable at the ith 
pixel, and β̂ is the vector of p predicted regression co-
efficients. The model-based estimate of mean AGB over 
the entire areas is:

 µU
!
= ′ιUXUβ̂   , (7.15)

where ′ιU is an N-length column vector where every 
element equals 1/N, XU is an N × (p + 1) matrix of satel-
lite auxiliary variables available for each element in the 
population U. The variance of the model-based mean 

Table 7.3 Statistical properties (bias, relative 
standard error, and 95% coverage probability) 
for SRS estimator (based on 1,000 iterations).

Table 7.4 Statistical properties (bias, 
relative standard error, and 95% 
coverage probability) for post-stratified 
estimator (based on 1,000 iterations).

Bias (%) SE (%) 95% CP

n

25 0.4% 20.1% 92.1%

50 -0.3% 15.1% 92.4%

100 -0.3% 10.6% 93.2%

200 0.4% 7.0% 95.2%

Bias (%) SE (%) 95% CP

n

25 0.0% 19.2% 91.5%

50 -0.5% 13.3% 94.7%

100 0.2% 9.8% 93.1%

200 0.3% 6.7% 94.2%
Table 7.5  Statistical properties of a model-assisted 
regression estimator with single-auxiliary (bias, 
relative standard error, 95% coverage probability) 
for four different phase-1 sample sizes (250, 500, 
1,000, 2,000) and four different phase-2 sample 
sizes (25, 50, 100, 200), based on 1,000 iterations.

Bias (%) SE (%) 95% CP

n2

25 0.3% 16.1% 90.6%

50 0.4% 11.5% 92.7%

100 -0.1% 7.8% 93.5%

200 0.1% 5.5% 94.4%
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AGB estimate is given by

 V µU
!⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟= ′ιUXUVβ̂ ′XUιU   , (7.16)

where Vβ̂ is the variance-covariance matrix for the re-
gression model parameter estimates β̂. For example, in 
the case of p = 2, Vβ̂ is given by:

 
V̂ β̂0( ) Cov! β̂0,β̂1( )

Cov! β̂1,β̂0( ) V̂ β̂1( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  . (7.17)

It should be noted that when using internal mod-
els developed from an SRS sample at all levels of the 
sampling design, the model-based estimator will yield 
virtually the same point estimate and variance estima-
tor as the model-assisted estimator. However, as noted 
above, the assumptions behind these estimators differ 
and provide more flexibility in the application of the 
model-based estimator (e.g., application to nonprob-
ability samples). Care must be taken to ensure that 
models are based on a representative (if not random) 
sample to reduce bias in the point and variance estima-
tors (see Exercise 4). 

7.6  Exercise 4: Simulation-
Based Assessment of 
Model-Based Estimator with 
One Source Of Auxiliary 
Data

In order to illustrate the perils of an incorrectly spec-
ified model in the context of model-based estimation, 
in this exercise, the model is developed from a sample 
selected only from the forested plots within the popu-
lation, and then used to estimate biomass—using both 

model-assisted and model-based estimators—over 
the entire population. Table 7.6 indicates that use of 
an incorrectly specific model (based on an unrepresen-
tative sample) can lead to significant bias in the point 
estimates (28% in this case), while the model-assisted 
estimator remains virtually unbiased (0.5%).

7.6.1  SAMPLING DESIGNS WITH MULTIPLE 
SOURCES OF AUXILIARY DATA

In some cases, two types of auxiliary information 
are available, where one (e.g., satellite SAR imagery) 
is collected wall-to-wall and another type of (more ex-
pensive and higher resolution) remotely-sensed data is 
collected in a sampling mode. For example, multi-level 
sampling design may consist of: (1) a large sample of 
relatively inexpensive photo-interpreted plots distribut-
ed over an area of interest, with (2) detailed, relatively 
expensive, field measurements of the attribute of inter-
est (e.g., tree biomass/carbon) collected on a subsam-
ple of these photo plots, and (3) free, or very inexpen-
sive, satellite image data (SAR) available over the entire 
area. Depending on application and how the data were 
collected, this type of multi-level sampling design can 

be approached from a model-based or model-assisted 
inferential standpoint. 

7.6.2  MODEL-ASSISTED

Following Mandallaz et al. (2013), a model-assist-
ed estimator of mean aboveground tree biomass can 
be developed using field plot data and two sources of 
auxiliary data in the following manner: as in the previ-
ous example, (1) a vector XU of remote sensing-derived 
variables that are known for all N elements in the pop-
ulation (U), and (2) a vector X1 of remote sensing-de-
rived variables that are known only for the elements 
in the first phase sample of n1 units, and the inventory 
attribute of interest, Y2, is only measured on a relatively 
small second-phase subsample of n2 photo plots. As a 
specific example, the XUi variables may represent satel-
lite image data (e.g., SAR HV/HH backscatter, Landsat 
tasselled cap bands) available wall-to-wall over the en-
tire study area, and the X1 variables represent photo plot 
measurements (average tree height, cover, forest type) 
that are only available at a sample of locations distribut-
ed over the area of interest. Regression analysis is used 
to develop a linear model for predicting biomass from 
photo-based measurements:

 Y2i = f(X1i;β1) + ε1i  , (7.18)

while satellite-derived predictor variables are used to 
predict biomass using satellite-based measurements: 

 Y2i = f(XUi;βU) + εUi  . (7.19)

Again, following Mandallaz et al. (2013), this design 
yields the following estimator of mean biomass for the 
study area:

  µ̂ma ,2=
1
N

ŶUi+
1
n1

j=1
N∑ Ŷ1i−ŶUi( )+ 1

n2
i=1
n1∑ Yk−Ŷ1k( )k=1

n2∑  (7.20)

Table 7.6 Statistical properties of model-assisted 
and model-based regression estimators with 
single-auxiliary (bias, relative standard error, 95% 
coverage probability) using a mid-range second-
phase sample size of 50 (based on 1,000 iterations). 

Bias (%) SE (%) 95% CP

n2 = 
50

M-A, 
1-aux 0.5% 11.3% 96.8%

M-B, 
1-aux 28.2% 9.2% 39.1%

n1

250 500 1000 2000

Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP

n2

25 0.5% 11.0% 91.3% 0.0% 10.8% 89.0% 0.5% 10.8% 89.0% 0.4% 10.3% 89.6%

50 -0.2% 8.3% 91.5% -0.1% 7.6% 92.8% 0.5% 7.4% 92.0% 0.0% 7.7% 89.9%

100 0.2% 6.5% 93.3% 0.0% 5.7% 94.3% 0.4% 5.3% 94.0% 0.0% 5.1% 93.5%

200 0.0% 5.4% 93.7% 0.0% 4.4% 95.2% 0.1% 4.0% 94.4% -0.1% 3.6% 95.2%

Table 7.7 Statistical properties of model-assisted estimator with two auxiliaries (bias, relative standard error, 95% coverage probability) for four different phase 
1 sample sizes (250, 500, 1,000, 2,000) and four different phase 2 sample sizes (25, 50, 100, 200). Satellite image-derived measurements were assumed to be 
available for every unit in the population (based on 1,000 iterations).



THE SAR HANDBOOK 

with variance estimator:

  V̂ µ̂ma ,2( )= 1
n1

1
n2

Y2i−ŶUi( )2+ 1

n2
1−

n2
n1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟i=1
n2∑ Y2i−Ŷ1i( )2i=1

n2∑  (7.21)

ŷ1k = ′x1k B̂1s
 (for k Є U) are the satellite image-based 

predictions at each satellite image pixel (obtained via 
linear regression). 

7.7  Exercise 5: Statistical 
Properties of Model-Assisted 
Estimators with Two Sources 
of Auxiliary Data
7.7.1  MODEL-BASED

A model-based approach to utilizing auxiliary data 
collected at multiple levels was developed by Saarela et 
al. (2016). As in the previous example of model-based 
estimator, the relationship between the inventory attri-
bute Y, which is the random variable (AGB) with a mean 
μ and standard deviation σ, the observed mean AGB 
value at the ith pixel (yi) can be represented as: 

 μi = f(Xi;β) + єi  , (7.22)

where єi ~N(0,σ2). The mean AGB at the ith pixel is given 
by

 µ̂i = f Xi ;β( ) (7.23)

which is estimated by 

 µ̂i = f Xi ;β̂( ) (7.24)

where Xi is the set of lidar-based predictor variables 
available for the second phase sample n2 of the pop-
ulation and β̂ is the vector of p predicted regression 
coefficients. This linear model is used to estimate the 
mean ABG at every pixel in the first phase sample n1:

 µ̂1i = f X1i ;β̂( )  . (7.25)

In this hierarchical modelling framework, a sec-
ond model is developed relating the satellite-based 
predictor variables ZU available over the entire pop-
ulation to the µ̂1 predictions available within the first 
phase sample:

 µ̂1i = f Z1i ;α1( )+ω1i  (7.26)

where ω1i~N(0,σ2) and α1 is the vector of model co-
efficients linking lidar-estimated AGB values and the 
satellite predictor variables estimated by α̂1. The 
model-based estimate of mean AGB over the entire 
area is

 µU
!
= ′ιUZUα̂1  . (7.27)

The variance of the model-based mean AGB estimate 
is given by:

 V µU
!⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟= ′ιUZUVα1

! ′ZUιU   , (7.28)

where  V
α1
! is the variance-covariance matrix for the 

regression model parameter estimates given by:

Vα̂=
 ˆ′ω1ω̂1

M−q−1
′Z1Z1( )−1 

+ ′Z1Z1( )−1
′Z1 X1Vβ̂ ′X1
⎡
⎣⎢

⎤
⎦⎥
Z1
′Z1Z1( )−1

  , (7.29)

where Vβ̂ is the variance-covariance matrix for 
the regression model parameter estimates β̂ and 
ω̂1= X1β̂−Z1α̂1 is an n1 length vector of model 
residuals. 

7.8  Exercise 6: Statistical 
Properties of Model-Based 
Estimators with 2-Auxiliaries 
with Biased Model

Refer to Table 7.8.

Table 7.8 Statistical properties of model-assisted and model-based regression estimators with two auxiliaries (bias, relative standard error, 95% coverage 
probability) using a mid-range second-phase sample size of 50 (based on 1,000 iterations). 

n1

250 500 1000 2000

Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP

n2 = 
50

M-A, 2-aux -0.4% 8.2% 95.6% -0.2% 7.8% 96.0% -0.1% 7.6% 95.6% 0.1% 7.3% 95.7%

M-B, 2-aux 10.8% 7.8% 85.7% 11.2% 7.1% 82.9% 10.7% 7.1% 82.8% 11.5% 6.5% 81.1%

7.9  Exercise 7: Estimation 
of Tree Biomass Using Field 
Plots, Lidar Plots, and SAR

In this exercise, the model-based estimators are 
applied with two sources of auxiliary data using an 
actual dataset collected for a region of interior Alas-
ka (USA). The data consist of: (1) estimates of abo-
veground tree biomass (Mg/ha) collected over rela-
tively sparse sample of field plots (n2 = 30 1/30th ha 
circular plots), (2) height-based metrics collected over 
a denser (systematic) sample of lidar plots (n1 = 325 
1/30th ha circular plots), and (3) wall-to-wall L-band 
satellite SAR-derived imagery (see Fig.  7.3). Tree 
height, tree diameter, and species were collected for 
each tree on the plots, and allometric models were 
applied to these measurements to estimate tree—
and aggregated plot-level biomass (Yarie et al. 2007). 

Here, the model-based estimator with one source 
of auxiliary data (SAR imagery) developed in Exercise 
4, and the estimator for two sources of auxiliary data 
(wall-to-wall L-band SAR backscatter, large sample 
of lidar plots) developed in Exercise 6 are compared 
in the estimation of total aboveground tree biomass 
(Table 7.9). 

Table 7.9 Mean biomass estimate for Tok study 
area (interior Alaska) using field data, lidar plots, 
and SAR imagery. 

Mean 
(Mg/ha)

SE 
(Mg/ha)

Model-based 
estimator: SAR only 49.35 9.43

Model-based 
estimator: SAR and 
Lidar plots

50.83 7.07
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7.10  Application in 
Monitoring, Reporting, and 
Verification (MRV) systems
7.10.1  REQUIREMENTS OF REDD+ MRV 
PROGRAMS 

The Intergovernmental Panel on Climate Change 
(IPCCC) has specified good practice as it pertains 
to the concept of REDD+ forest monitoring as in-
ventory design that “neither over- nor under-esti-
mates so far as can be judged, and in which uncer-
tainties are reduced as far as is practicable” (GFOI 
2016). This guidance essentially promotes the im-
plementation of monitoring programs that maxi-
mize precision of estimates, while minimizing bias, 
within the constraints of available resources. The 
multi-level estimators for forest biomass present-

ed in this chapter provide a range of options for 
design of carbon monitoring programs, including 
model-assisted approaches requiring probability 
samples for all levels of the design that provide 
design-unbiased estimators and model-based ap-

proaches that may be less expensive to implement 
due to the lack of requirements for a probability 
sample, but at the cost of a possibly biased esti-
mator if the model is incorrectly specified.  

Figure 7.3 L-band radar imagery, lidar 
plots (blue), and field plots (red) for 
Tok study area, interior Alaska, U.S. 
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