
	 THE SAR HANDBOOK

APPENDIX C
Estimating Forest Stand
Height Using L-band SAR 	
– Chapter 4 Training Module

Developed by Helen Baldwin and Sarva Pulla with data and
scripts from Paul Siqueira and Yang Lei

Input datasets:
•	 ALOS PALSAR or equivalent L-band

dual-polarized imagery
•	 Forest height data (lidar or

ground collection; GeoTIFF)
•	 A forest/non-forest mask (optional; GeoTIFF)

Software:
•	 A Unix/Linux environment required

to run the Python scripts
•	 QGIS/ArcGIS/GoogleEarth

(suggested for visualization)
•	 Anaconda for Python and packages

In this tutorial, we will estimate forest stand height
(FSH) using L-band SAR data. The most accurate way to
estimate FSH with repeat pass interferometry is by using
a combination of SAR backscatter power and InSAR co-
herence. For this reason, the approach described here
can be referred to as a combined SAR/InSAR estimation
of FSH. Since the backscatter power relationship is most
appropriate to calculate values of FSH below 10 m and
values above this threshold are best determined by in-
terferometric coherence, this algorithm computes FSH
from interferometric coherence first, and the backscatter
power empirical relationship is used if the FSH is below
that threshold.

1 DATA ACQUISITION

One L-band SAR scene and one ancillary dataset are
necessary for this tutorial. An additional ancillary data-
set is recommended. To download an example dataset,
please see section 2.5 of this module.

1.1 ALOS PALSAR

Since the structure of vegetation is on the order of
10’s of centimeters, forest vegetation is often best ob-

served with P- or L-bands (~24 cm). At this bandwidth,
the Japanese Aerospace Exploration Agency (JAXA)’s
JERS-1 and ALOS-1 & -2 satellites are available, but geo-
graphically limited. This tutorial utilizes ALOS-1. Please
refer to Marc Simard’s Training Module in Appendix E for
for an explanation of how to acquire ALOS PALSAR data
and select the Single-Look Complex (SLC) product. This
tutorial could also potentially apply to NISAR data in the
future.

Processing InSAR data to estimate FSH requires either
raw satellite data that have been downlinked, but not
processed, or SAR data that have been processed into
SLC imagery appropriate for forming interferograms.
If you have access to SLCs, it is recommended that you
skip section 4 and proceed to section 5. If only raw data
are available, then the additional processing explained
in section 4 of this tutorial is necessary. One advantage
of beginning with raw data are that the output formats
of the interferograms and ancillary data make it easy to
follow on the processing methods with additional steps
implemented to estimate FSH.

1.2 Ancillary Datasets

FSH ground validation data are an important compo-
nent of the FSH estimation methodology. There are two
types of ancillary data utilized in the algorithm. Locations
where forest height has been previously determined are
required to train the empirical models. A forest/non-for-
est mask indicating where the estimates should be calcu-
lated is an optional dataset.

1.2.1 Forest Height Data

Independent measurements of forest height are
necessary to determine values for the empirical models
that relate radar backscatter power and interferometric
coherence to FSH. Lidar data are preferred, since they
acquire accurate measurements of vegetation height
over an extended geographic region. Freely-available
satellite resources of lidar data are currently or about to
become accessible, including ICESAT-1 and -2, and the
upcoming NASA GEDI mission. This dataset should be in
a GeoTIFF format and resampled to the same resolution
as the InSAR image. The margin/NoData values must be
set to NaN or some number less than zero. Within the
FSH scripts, this data set is referred to as “ref_file.”

If lidar data are not available, then another form of
independent forest height needs to be identified or
created. A simple method is to perform a land cover
classification of a region using optical data sets. Stands
of different ages and species composition will have
different heights, which can be estimated from the
ground to the same accuracy as the FSH. This approach
was used during the development and testing of the
FSH algorithm with mixed results.

1.2.2 Map of Forest/Non-forest

The forest/non-forest map can be derived from
a number of sources, or made independently by the
user. Examples of sources that can be used to derive
a forest/non-forest mask are i. JAXA’s FNF mask, ii. the
US National LandCover Dataset, and iii. The ESA’s CCi
Landcover (formerly GlobCover). These datasets are
used to identify where forests are situated and, hence,
where to estimate FSH. The forest/non-forest mask
must be classified so that all regions where FSH should
be estimated have a value of zero and all regions where
FSH should not be estimated have a value of 1.This op-
tional dataset should be a GeoTIFF and resampled to
the same resolution as the InSAR image. This file must
be in degrees; e.g., EPSG 4326. The margin/NoData
values must be set to NaN or some number less than
zero. Within the FSH scripts, this dataset is referred to
as “mask_file”.

2 LINUX ENVIRONMENT AND PYTHON SETUP

While Python scripts can be run in the Windows,
OSX, and Unix environments, the methods in this
module require a Unix or Linux environment. Please
follow the instructions in section 2.1 to setup a Linux
environment on your computer using Oracle Virtual-
Box, section 2.2 to install Anaconda, and section 2.3 to
install dependencies for the FSH scripts. If you already
have a Linux environment, or have completed any of
the other setup steps, please proceed to the next ap-
plicable section.

2.1 Download and Install VirtualBox

1.	 First, go to https://www.virtualbox.org/ to
download Oracle VM VirtualBox. Choose the
host appropriate for your computer.

2.	 Next, go to https://www.ubuntu.com/down-

https://www.virtualbox.org/

THE SAR HANDBOOK	

load/desktop and download the latest version of
Ubuntu. We will use this later on while setting up
our virtual machine.

3.	 Follow along with the Oracle VM VirtualBox instal-
lation wizard. Once installation is finished, open
the Oracle VM VirtualBox.

4.	 Click “New” in the menu located at the top of the
Oracle VM VirtualBox Manager window to create
the virtual machine you will use for this exercise.
This menu bar is shown below.

5.	 The “Create Virtual Machine: Name and operating
system” window shown below should pop up.
Enter a name for your virtual machine. For this ex-
ercise, we chose “FSH”. Browse to a folder where
you would like to save your machine, select “Linux”
from the dropdown menu as the type of machine,
and select “Ubuntu (64-bit)” as your version.

6.	 Once the name and operating system for your new
machine are set up as shown in the image above,
click next. The “Create Virtual Machine: Memory
size” window should pop up.

7.	 Enter the amount of memory you would like to al-
locate to your machine. I chose 8192 MB, as shown
below. Click next.

8.	 Leave the Hard disk selection on “Create a virtual
hard disk now” and click create, as shown below.

9.	 Leave the Hard disk file type selection on “VDI
(VirtualBox Disk Image)” and click next, as shown
below.

10.	 Leave the Storage on physical hard disk selec-
tion on “Dynamically allocated” and select next,
as shown below.

11.	 Set up the file location and size as shown below.
Your file name should automatically populate,
but you can also navigate to a new folder to
create the file if necessary. I selected 40GB for
the virtual hard disk size. Select create, and the
“Create Virtual Hard Disk” pop up window will
close.

12.	 Notice that your new virtual machine has been
added to the list of virtual machines along the
left side of your Oracle VM VirtualBox Manag-
er. As shown below, I have a virtual machine
named “sar” along with the virtual machine
“FSH” that I just created.

13.	 Select your new virtual machine from the list.
It should appear highlighted, as shown above.

14.	 Click “Settings” in the menu located at the top of
the Oracle VM VirtualBox Manager window to
adjust the settings of your new virtual machine.

15.	 Within the settings pop up window, navigate to
the advanced tab.

16.	 Under “Shared Clipboard,” choose “Bidirection-
al” from the drop down menu. This will allow
you to copy and paste between your host sys-
tem and your virtual machine.

	 THE SAR HANDBOOK

17.	 Navigate to “System” from the left hand menu.
Choose the processor tab. Increase your num-
ber of CPUs; I chose 4, as that was the maximum
within the suggested green range.

18.	 Navigate to “Storage” from the left hand menu.

19.	 Select the “Empty” disk icon under the COntrol-
ler IDE option. Under Attributes, click on the
disk icon next to the optical drive selection “IDE
Secondary Master.” Navigate to the Ubuntu for
desktop that you downloaded in step 2 using
the “Choose Virtual Optical Disk File” option.

20.	 Navigate to “Shared Folders” from the left hand
menu.

21.	 Click the add folder icon along the right
of the shared folders window to get to the “Add
share” pop up window as shown below.

22.	 Navigate to the folder where your virtual ma-
chine is stored within the Folder Path option.
The name of the folder will be automatically
populated. Choose the “Auto-mount” option as
shown below.

23.	 Click OK to return to the Shared Folders page.
Your folder should now appear in the list of Ma-
chine Folders as shown below.

24.	 To avoid a blank screen after installing Guest
Additions in a later step, navigate to “Display”
from the left hand menu. Use the drop down
menu for the Graphics Controller to select
“VBoxVGA.”

25.	 Click “OK” to apply these setting changes and
return to the Oracle VM VirtualBox Manager.
Click “Start” in the menu located at the top of
the Oracle VM VirtualBox Manager window to
run your new virtual machine.

26.	 The welcome pop up shown below should ap-
pear. Choose your preferred language from the
list and click “Install Ubuntu.”

27.	 Click continue to utilize the default keyboard
layout.

28.	 Click continue to utilize the default installation
and update options.

29.	 Click “Install Now” with the default selections
as shown below.

30.	 Click continue when the pop up window “Write
the changes to disk?” appears.

31.	 Click continue after selecting your time zone.

THE SAR HANDBOOK	

32.	 Fill in your prefered name and password for
your virtual box as shown below.

33.	 Once installation is complete, the window be-
low should appear. Choose “Restart now” to
use the new installation.

34.	 After a few minutes, the “What’s new in Ubun-
tu” window shown below should appear. Click
next.

35.	 Click next to proceed past the Livepatch window.

36.	 Click next to proceed past the “Help improve

Ubuntu” window after choosing whether or
not to report information to developers for im-
provement.

37.	 Click “Done” on the “Ready to go” window.

38.	 Click “Devices” in the menu on the top of your
running machine and choose “Insert Guest Ad-
ditions CD Image” from the drop down menu,
as shown below.

39.	 The VirtualBox Guest Additions CD (here:
VBox_GAs_6.0.1) should appear on the desk-
top of your virtual machine and a warning win-
dow may appear as shown below. Click “run” to
proceed. You may be prompted to enter in your
password to run the Guest Additions disk.

40.	 Once the Guest Additions disk has finished
running, the warning, “This system is currently
not set up to build kernel modules” may appear
at the end of the messages in the terminal, as
shown below. If this is the case, press enter to
close the window, and follow steps 40 through
48. If this warning does not appear, you may

move on to installing Anaconda in section 2.2.

41.	 Open the terminal using ctr, alt, and t. Then
type in the command sudo apt-get in-
stall linux-headers-̀ uname -r̀

dkms build-essential or sudo apt-
get install linux-headers-$(uname

-r) dkms build-essential

42.	 You should be prompted to enter “y” to contin-
ue. The packages identified as missing in step
39 should now be installed. Press enter to close
the window.

43.	 In order to use these packages, you will have
to restart the virtual machine. Select the arrow
along the top right menu (shown below).

44.	 An additional menu, shown below, should
open.

	 THE SAR HANDBOOK

that appears, choose “Copy Link Location.”

50.	 Open the terminal using ctr, alt, and t. Type in the the command “wget”, and then
paste the location of the download for Python 2.7 version, as shown below.

51.	 The “Welcome to Anaconda” text should display in your terminal as shown below.
Copy the highlighted “Anaconda2-2018.12-Linux-x86_64.sh.1” text.

52.	 Enter the command “bash” and paste in the “Anaconda2-2018.12-Li-
nux-x86_64.sh.1” text. Follow the prompts to review the Anaconda license
information, and enter “yes” to confirm the installation of Anaconda when
prompted.

53.	 Enter the location where you would like Anaconda to be saved. I chose the

45.	 Click on the power icon to open the Power Off window, and choose “Re-
start”. When the VM restarts, rerun the VirtualBox Guest Additions CD by
clicking on the file icon in the menu on the left hand side. Click the Guest
Additions disk in the left hand menu on the pop up window. Then select
“Run Software”, as shown below.

46.	 The VirtualBox Guest Additions Installation window should open as shown
below. Press enter to close the window.

47.	 Restart the machine as described in steps 42 through 45.

2.2 Download and Install Anaconda

48.	 Open your web browser on your virtual machine, and navigate to https://www.
anaconda.com/distribution/#linux or search for “install Anaconda.” Make sure to
select the tab for the Linux operating system.

49.	 Right click on the download button for the 2.7 version of Python as shown below,
as the FSH scripts were developed and tested using this version. From the menu

THE SAR HANDBOOK	

default as shown on the previous page.

54.	 After the installation is finished, you will be prompted to initialize Anaconda2
in your .bashrc, as shown below. Enter “yes.”

55.	 When prompted to proceed with the installation of Microsoft VSCode, as
shown below, please enter “no.”

56.	 Close your terminal and open a new terminal (ctr, alt, and t) for your instal-
lation of Anaconda to become active.

2.3 Download and Import Dependencies

1.	 To create a python environment named “sar” where we will store all the depen-
dencies necessary to run the FSH scripts, enter the command “conda create -n
sar python=2.7.” You can choose to name your environment something other than
sar.

2.	 When prompted, enter “y” to proceed with the installation.

3.	 To activate this python environment in the future, use the command “conda ac-
tivate sar” to enter the environment and “conda deactivate” to leave it. Notice as
you use these commands that you will move from “base” to “sar” environments,
as shown below.

4.	 Now, let’s set up our “sar” environment with the required python packag-
es: NumPy, SciPy, SimPy, json, pillow, OsGeo/GDAL, simplekml, mpmath.
Activate the “sar” environment by entering the command “conda activate
sar” into the terminal. Install gdal, numpy, pillow, simplekml and scipy by
entering the command “conda install -c conda-forge gdal numpy=1.15 pillow
simplekml scipy” as shown below.

5.	 When prompted, enter “y” to proceed.

6.	 Enter the command “pip install simpy mpmath” to install additional prereq-
uisites.

7.	 To confirm that you have installed all of the Python packages, you can enter
the command “python.” Then enter “import gdal” or “import” followed by
any of the other packages. If no errors pop up in your terminal and the ar-
rows that indicate a new line appear, then the packages have been installed
correctly.

8.	 Enter the command “exit ()” to leave python.

9.	 To view the version and other information about the packages you have in-
stalled, in the “sar: environment of the terminal, enter the command “conda
list pillow” or “conda list” plus any of the packages, as shown below.

	 THE SAR HANDBOOK

3 DOWNLOAD MATERIALS FOR THE TUTORIAL

The Python scripts needed for this tutorial, written by Y. Lei the principal developer
of the FSH technique, and an example dataset can be freely downloaded from GitHub
or from the SERVIR Global website. The example data are preprocessed, and using
these data allow you to skip sections 4 and 5 and proceed to section 6.

3.1 Obtaining the Scripts from GitHub

1.	 Navigate to the GitHub page https://github.com/leiyangleon/FSH using FireFox
or another internet application on your virtual machine.

2.	 Click the green “Clone or download” button and copy the link shown under the
“Clone with HTTPS” pop up window, as shown below.

3.	 Open a terminal, and if you are not already in the “sar” environment created in
section 2.3, navigate to the “sar” environment by entering the command “conda
activate sar.”

4.	 Enter the command, “git clone” followed by pasting in the link you copied from
the GitHub: https://github.com/leiyangleon/FSH.git, as shown below.

5.	 If git does not exist on your virtual machine, follow the prompts to install it using
the command “sudo apt install git,” followed by your virtual machine’s password.

6.	 If you navigate to “Home” under the “Files” tab from the menu on the left hand
side, you should be able to see the “FSH” folder that you downloaded with all of
the scripts necessary for this tutorial.

7.	 Within your FSH folder, there should be three folders (scripts, test_exam-
ple_ISCE, and test_example_ROIPAC) and three files (LICENSE, preview.jpg,
README.md) inside, as shown below.

8.	 While there are two folders that seem like they should contain data (test_ex-
ample_ISCE and test_example_ROIPAC), if you open these folders than you
will find that they only include a text file, and no SAR data or other required
files, as shown below.

9.	 To download the example data, please proceed to the next section (3.2).

https://github.com/leiyangleon/FSH

THE SAR HANDBOOK	

3.2 Downloading Example Data

The example data consists of three scenes, including a central scene with overlap-
ping NASA LVIS LiDAR data and two adjacent scenes.

1.	 You can access the link to download the example data by opening the
text document within the test_example_ROIPAC and test_example_ISCE
folders respectively. See below for the location of the link within the text
file for the ROIPAC data.

2.	 You can also navigate to this link through the GItHub, following the same
folder tree, as shown below.

3.	 Either way you choose to find the link to the data, copy and paste this link
into the web browser on your virtual machine. While both datasets are
compatible with the FSH scripts, we will use the ROI_PAC as our example
for this tutorial.

4.	 Choose the download icon to download the dataset from the Google
Drive link. When prompted for confirmation due to the large size of the
file, select “download anyway”. When prompted to open the file, choose
“save file” and press “OK.”

5.	 Within “Files,” navigate to “downloads.” Right click on the example data
zip, and from the pop up menu, choose “Extract to..”

6.	 Navigate to “Home” and press the green “Select” button to extract the
example data there.

7.	 Within the “test_example_ROIPAC” folder , you will find “flagfile.txt”
(referred to as the flag_file in the scripts),“linkfile.txt” (link_file), “How-
land_LVIS_NaN.tif” (ref_file), and “Maine_NLCD2011_nonwildland.tif”
(mask_file). All of the associated files for the three ALOS PALSAR HV-pol
InSAR coherence scenes are grouped by their ALOS (“f$frame_o$orbit”)
and their acquisition dates (under the subfolder “int_$date1_$date2”).
For each scene, there are seven associated files outputted by the ROI_
PAC software: “$date1_$date2_baseline.rsc”, “$date1-$date2_2rlks.
amp.rsc”, “$date1-$date2-sim_SIM_2rlks.int.rsc”, “$date1-$date2.amp.
rsc”, “geo_$date1-$date2_2rlks.amp”, “geo_$date1-$date2_2rlks.cor”,
“geo_$date1-$date2_2rlks.cor.rsc”. Finally, “ROI_PAC.jpeg” shows the
final output of 3-scene mosaic map (GeoTiff format) overlaid on Google
Earth in a QGIS window. Please see below for the file layout.

	 THE SAR HANDBOOK

4 PROCESSING RAW SAR DATA

When processing SAR data, corrections are made for the motion of the satellite
and image projection effects that arise from the atmosphere, viewing geometry and
topography of the Earth. The steps of processing of ALOS SAR data from raw samples
for the satellite include range compression, azimuth compression resulting in an SLC,
and finally projection into map coordinates. Software for processing raw data into SLCs
can be obtained both commercially and through open-source licensing agreements. Of
the open source licensing processors, there are two that have been used for process-
ing raw ALOS data into SLCs and then into estimates of FSH. These are the ROI_PAC
(Repeat Orbit Interferometry PACkage) and ISCE (InSAR Scientific Computing Envi-
ronment). In this tutorial, we focus on ROI_PAC as it has completed its development
lifetime and is somewhat easier to obtain than ISCE. At the time of this writing, ISCE
remains under development. With this in mind, the preprocessing scripts in section 3.2
and the scripts in section 4 that estimate FSH from SLCs have been designed to work
with outputs from both ROI_PAC and ISCE.

4.1 Obtaining the Scripts from GitHub

1.	 Obtain the ROI_PAC processing software in tgz (gzipped tar) format from: http://
www.openchannelfoundation.org/projects/ROI_PAC

2.	 Download and install a fortran compiler (e.g. gfortran) and the fftw library. See
http://roipac.org/cgi-bin/moin.cgi/installation for additional details on the in-
stallation of ROI_PAC software.

3.	 Utilize the test data set that comes with the ROI_PAC software distribution to test
the software installation. You can find the details of how to test the software in
the ROI_PAC installation subdirectory: fullpath/contrib/multtest.sh where full-
path refers to the folder where you unzipped the ROI_PAC installation archive.

4.2 Processing ROI_PAC/ISCE outputs with Python scripts

1.	 To open the terminal within your virtual machine, press ctr, alt and t.

2.	 Crop the ROI_PAC/ISCE output and eliminate the image margins by running the
standalone python scripts CROP_ROIPAC.py and CROP_ISCE.py respectively.
Please note that the amount cropped is hard coded based on the dimensions of
the ALOS SAR image. The code would need to be adjusted for ALOS-2 and future
NISAR images.

•	 For ROI_PAC processed results enter the command python directo-
ry_of_scripts/CROP_ROIPAC.py dirname date1 date2

•	 For ISCE-processed results, run the following command within the execution
of insarApp.py python directory_of_scripts/CROP_ISCE.py

You will need to replace three parameters in these commands:

•	 Replace directory_of_scripts with the location of the ROI_PAC amp/cor files

•	 Replace date1 with the date for the 1st SAR acquisition

•	 Replace date2 with the date for the second SAR acquisition

For information on how to geocode the ROI_PAC/ISCE output, please see the
Chapter 2 training module.

5 FILE CREATION & ORGANIZATION

5.1 File Structure

The data should be organized in a file structure such that the individual fold-
ers hold results from individual interferograms between two dates (the SLCs and
ancillary data for individual scene (frame) and orbit (path) numbers). For any
one frame and path number, there may exist multiple interferograms, related to
multiple repeat-pass combinations of data from two different dates. These inter-
ferograms should be stored in sub-directories that have the naming convention:
int_date1_date2. Scenes from differing frame and paths can be interferometrical-
ly processed in order to create an estimate of FSH over an extended geographic
region.

The interferogram subdirectories will hold all of the data and information nec-
essary for creating and documenting interferograms made for an observation on
two specific dates (date1 and date2). For ROI_PAC-processed data, the most im-
portant file looks like geo_date1-date2_2rlks.cor and geo_date1-date2_2rlks.cor.
rsc. The resource “.rsc” file is a text file that has information the location and size of
the geolocated correlation data held in geo_date1-date2_2rlks.cor. The format of
the correlation file is known as sample-interleaved, or an rmg-format file.

Since radar data are organized in terms of orbits and scenes, in order to make
a map of FSH over an extended geographic region it is necessary to mosaic the
images. While the process of mosaicking can be done either before or after the
estimation of FSH, it is best to do this beforehand to take advantage of the overlap
region between images in adjacent paths. In these regions, while the value of the
coherence magnitude may vary due to the fact that the observations (and image
pairs) have occurred from different orbits (and hence, different dates), the overlap
regions can be used to correct for these temporal differences and to adjust the co-
efficients for the empirical relationships of the SAR products to estimates of FSH.

For each ROI_PAC-processed scene, the following files should be located in a
directory with the format “f$frame_o$orbit/int_$date1_$date2”:

$date1_$date2_baseline.rsc
$date1-$date2.amp.rsc
$date1-$date2_2rlks.amp.rsc
$date1-$date2-sim_SIM_2rlks.int.rsc
geo_$date1-$date2_2rlks.amp
geo_$date1-$date2_2rlks.cor	
geo_$date1-$date2_2rlks.cor.rsc

Please note that the ROI_PAC’s process_2pass.pl should be run with 2 range looks
and 10 azimuth looks in both coherence estimation and multi-looking (equivalent to a
30m-by-30m area for JAXA’s ALOS), with the following lines added to the process file:

Rlooks_int = 2
Rlooks_sim = 2

http://www.openchannelfoundation.org/projects/ROI_PAC
http://www.openchannelfoundation.org/projects/ROI_PAC
http://roipac.org/cgi-bin/moin.cgi/installation

THE SAR HANDBOOK	

Rlooks_sml = 2
pixel_ratio = 5

A 5-point triangle window is hardcoded in ROI_PAC, which is equivalent to a
2-point rectangle window. For further details on running ROI_PAC, refer to the
ROI_PAC manual. For each ISCE-processed scene, the following files should be
located in a directory with the format “f$frame_o$orbit/int_$date1_$date2”:

isce.log
resampOnlyImage.amp.geo
resampOnlyImage.amp.geo.xml
topophase.cor.geo		
topophase.cor.geo.xml

Please note that ISCE’s insarApp.py should be run with 2 range looks and 10
azimuth looks in both coherence estimation and multi-looking (equivalent to a
30m-by-30m area for JAXA’s ALOS), with the following lines added to the process
file:

<property name=”range looks”>1</property>
<property name=”azimuth looks”>5</property>

A 5-point triangle window is hardcoded in ISCE, which is equivalent to a 2-point
rectangle window. The .amp/.cor images then need to be multilooked by a factor
of two. For further details on running ISCE see the ISCE manual.

The location of the output files depends on whether they are related to the
overall processing of the entire dataset, or are directly associated with a single
scene. Examples of each would be the SC iteration files as a general output, and
a single forest stand height image as a scene-specific output. The general outputs
will be stored in a directory named “output” located within the main file directory
(file_directory). The scene specific outputs will be stored with the other scene
data as described earlier.

5.2 Create Flag File

Once the data have been organized into directories of scenes described by
their individual row and path numbers, and the interferograms have been ex-
amined to determine which SLC pairs yield the data with the highest coherence
(i.e. least amount of temporal decorrelation), there remains the task of creating
what is known as a “flag file” and a “link file.” In this context, the flag file is a listing
of all the interferograms that will be used in creating the region-wide mosaic of
FSH. In the example dataset, there are three such row/path combinations that will
create a three-scene mosaic of FSH located in central Maine. The middle of the
three scenes overlaps with the forest height data (ref_file) discussed in Section
1.2, and all scenes are within the region where identifications of forest/non-forest
(mask_file) is used for determining geographic locations where the FSH algorithm
will be applied. An example of the contents of a flag file in text format is:

In this example, the first column of numbers indicates the interferogram num-
ber, the second is the root file name of the data that forms the interferogram, the
third and fourth are the dates that the data were collected for the interferometric
pairs, the fifth and sixth are the satellite path and orbit respectively, and the last
indicates the polarization of the data.

5.3 Create Link File

The link file provides information on which files are expected to have some
degree of geographic overlap, and will be used in propagating the coefficients of
FSH. While many files may have such a geographic overlap, and that indeed this
overlap can be automatically calculated, a separate link file is desired so that links
can be added or broken as necessary in order to account for the varying quality
of data in the overlap region used to estimate the coefficients (e.g. a scene with a
particularly high degree of temporal decorrelation can be removed from the link
list). A simple example of the test-formatted link file is:

This indicates that image 2 is connected to image 1, and that image 2 is also
connected to image 3 (and also that images 1 and 3 are also not connected).

6 ESTIMATE FOREST STAND HEIGHT

Once the SLC, forest/non-forest mask, vegetation height, link file, and flag files
are created and put into place, you can run the FSH scripts by calling them in the
terminal and passing the input file names and ancillary information as arguments.
You can run each script one at a time, or call the main script. For this tutorial,
we will run the FSH scripts from Anaconda in the virtual machine we set up. All
five possible final output data types are produced. Please note that runtime does
not increase linearly with each additional scene. Runtime for most of the steps
are linear in the number of scenes; however, the core part of the inversion and
mosaicking depends on the number of edges, which increases a bit faster as the
number of scenes increases.

6.1 Access the Anaconda Environment

1.	 Press the green arrow to run your virtual machine.

2.	 To open the terminal press ctr, alt, and t.

3.	 Type in the command “conda activate sar” to access the Anaconda environ-
ment and dependencies that you installed in section 2.2. Notice that your
terminal should change from “base” to “sar” environment as shown below.

	 THE SAR HANDBOOK

6.2 Find the Directory of Scripts and Example Data

1.	 In order to run the scripts from your terminal, you will need the directory to your
scripts and the directory to your example data. To get to the directory of your files,
right click within the folder that they are stored.

2.	 From the popup menu that appears, choose “Properties.”

3.	 You can then copy and paste the Parent Folder plus the folder name from the
properties window into your script. Below is the properties window for the folder
that holds my scripts.

6.3 Run Main FSH Script

1.	 Now let’s call the first script! For the ROI_PAC processed example files, enter
the command into the terminal “python .../forest_stand_height.py 3 2 2 5
“linkfile.txt” “flagfile.txt” “Howland_LVIS_NaN.tif” “Maine_NLCD2011_non-
wildland.tif” .../test_example_ROIPAC/ “gif json kml mat tif” --flag_proc=0”
into the terminal, where “...” is the path to your forest_stand_height script
and your example ROI_PAC data respectively, as shown below. For the ISCE
data this would look like “python /home/dev/FSH-master/scripts/forest_
stand_height.py 3 2 2 5 “linkfile.txt” “flagfile.txt” “Howland_LVIS_NaN.tif”
“Maine_NLCD2011_nonwildland.tif” /home/dev/Downloads/test_exam-
ple_ISCE/test_example_ISCE/ “gif json kml mat tif” --flag_proc=1”

2.	 Let’s review what each of these inputs mean:

•	 First, we call “python” in order to run the python scripts within the ter-
minal. The following parameters for the FSH scripts listed in brackets are
optional, while the other parameters require input.

•	 file_directory/forest_stand_height.py calls the main FSH script that in
turn calls the rest of the scripts necessary to calculate FSH. You must pro-

vide the appropriate file directory to this script. For this example, the file
directory is “/home/fsh/FSH/scripts/forest_stand_height.py.”

•	 Scenes - enter the number of scenes in the dataset. This must be an in-
teger. If using a single radar scene, enter 1. In this example, we have 3
scenes.

•	 Edges - enter the number of scene to scene borders. If using a single
radar scene, enter 0. In this example, we have 2 scene to scene borders.

•	 start_scene (int) - flag value of the central scene that overlaps the forest
stand height ground truth (e.g. LiDAR, field) data. In this example, the
central scene is 2.

•	 iterations (int) - number of iterations to run the nonlinear least squares
part of the model. In this example, we want to run the nonlinear least
squares part of the model 5 times.

•	 link_file - a text file that lists all the edge scene pairs. Each line consists
of the two numbers that correspond to the flag numbers for those two
scenes. (e.g. “2 1” would be the line for the edge of the above scenes 001
and 002). If using a single ALOS scene, this file is unneeded, and input “-”
instead of the file name for the terminal arguments. For this example, the
file name is “linkfile.txt.”

•	 flag_file - a text file that lists all the flags and corresponding full file
names and associated file information (dates, scene location (frame#,
orbit#), polarization). In this example, the file name is “flagfile.txt.” Ex-
amples of what this text file would contain are:

001 890_120_20070727_HV_20070911_HV 070727 070911 890 120 HV
002 890_119_20070710_HV_20071010_HV 070710 071010 890 119 HV
003 890_118_20070708_HV_20070923_HV 070708 070923 890 118 HV

•	 ref_file - reference tree height data (lidar or field inventory) in raster
format. Currently the code is set up to use a GeoTIFF file, but other ref-
erence data in raster format could potentially be used with some code
adjustments. In this example, the reference tree height data is “How-
land_LVIS_NaN.tif.”

•	 mask_file - land cover mask that excludes all water areas and areas of
human disturbance (urban, agriculture). This is currently set up to be a
GeoTIFF file. Other reference data in raster format could potentially be
used with some code adjustments. File must be in degrees (i.e., EPSG
4326). This file is recommended, but optional. If unused, put “-” in place
of the file name for the terminal arguments. For this example, the fine
name is “Maine_NLCD2011_nonwildland.tif.”

•	 file_directory - the root directory to folders containing the individual SAR
scenes. Each scene should have a directory named “f$frame_o$orbit”
(e.g. “f890_o120” for the above scene 001). This directory contains ei-
ther the input ROI_PAC processed or ISCE processed files and is also the
output location for all files that are associated with that scene. For this
example, the directory is: /home/fsh/test_example_ROIPAC/test_ex-

THE SAR HANDBOOK	

6.5 Overview of Scripts

Let’s review the scripts in the general order that they are called, including their main
purpose, inputs, outputs, and terminal commands.

1.	 forest_stand_height.py is the main script, which in turn calls nine other
scripts with a total runtime of around 23 minutes 22 secs for the example
data. Some of the other scripts call additional scripts.

The command line call is:

•	 python file_directory/forest_stand_height.py scenes edges start_scene
iterations link_file flag_file ref_file mask_file file_directory “output_
file_types” [--Nd_pairwise] [--Nd_self] [--N_pairwise] [--N_self]
[--bin_size] [--flag_sparse] [--flag_diff] [--flag_error] [—numLooks]
[—noiselevel] [--flag_proc] [--flag_grad].”

The inputs for this script in the order entered into the terminal are:

•	 scenes (int) - number of scenes in the data set

•	 edges (int) - number of edges (aka scene-scene borders)

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth (e.g. LiDAR, field) data

•	 iterations (int) - number of iterations to run the nonlinear least squares
part of the model

•	 Link_file (string) - file name of the file that lists all the edge scene pairs or
‘-’ if processing a single scene

•	 flag_file (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 ref_file (string) - filename of reference data raster file (ground truth data,
e.g. LiDAR, field)

•	 maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable; if no mask is a available input ‘-’ as the
filename)

•	 file_directory (string) - directory path of where the input and output files
are located

ample_ROIPAC/. Please note that no quotes are used in the terminal for
this parameter.

•	 Output file types - the list of output formats should be in quotes, and can
contain one or all of the following: “tif kml gif mat json”. In other words,
output formats can be created for any of these options. For this example,
all options are listed.

•	 The command option --flag_proc 0 indicates that the input data has been
processed into SLCs by the ROI_PAC algorithm. If the data was processed
by ISCE, please use 1 instead. For this example, we use a 0 to indicate that
the data was processed by ROI_PAC.

3.	 The scripts are also able to be run with a single radar scene. To do this use “-“
instead of a link_file name, and in the input have 0 edges.

•	 For example: python .../forest_stand_height.py 1 0 1 5 - “flagfile.txt”
“Howland_LVIS_NaN.tif” “Maine_NLCD2011_nonwildland.tif” /directo-
ry_of_files/ “gif json kml mat tif” --flag_proc=1

4.	 In the case that you are running the FSH scripts on your own data, or would
like to call each FSH script individually in the command line, please find the
inputs, outputs, and terminal command lines in section 6.5. Please note that
there are additional, unrequired parameters for the forest_stand_height.
py that are explained in section 6.5 that are not included in the example.
Otherwise, proceed to section 6.4 to generate a mosaic of your forest stand
height estimation.

6.4 Generate Mosaic

1.	 To create a mosaic of the generated forest height maps for all the scenes in
GeoTiff format, run the following command “python directory_of_scripts/
create_mosaic.py directory mosaic_file list_of_files” in the terminal. You
will need to replace three parameters.

•	 Replace directory_of_scripts with the location of the scripts.

•	 Replace mosaic_file with the name you would like to give your final mo-
saic of forest stand heights.

•	 Replace list_of_files with paths to each map that you would like to be
combined within the mosaic in the format “file1 file2 file3.”

2.	 For example:

/home/dev/test_example_ROIPAC/test_example_ROIPAC//
create_mosaic.py /home/dev/test_example_ROIPAC/test_ex-
ample_ROIPAC/ “3sc_mosaic.tif” “.../test_example_ROIPAC/
f890_o118/890_118_20070808_HV_20070923_HV_fsh.tif
.../test_example_ROIPAC/f890_o119/890_119_20070710_
HV_20071010_HV_fsh.tif .../test_example_ROIPAC/
f890_o120/890_120_20070727_HV_20070911_HV_fsh.tif”

3.	 Following is a snapshot of the expected mosaicked forest stand height re-
sults using the example dataset.

	 THE SAR HANDBOOK

a.	 filetypes (string) - list of the desired output file types formatted as a single
string with quotation marks (e.g. “kml json tif”)

b.	 [--Nd_pairwise] (int) - optional pixel-averaging parameter for edge fitting
(default=20)

c.	 [--Nd_self] (int) - optional pixel-averaging parameter for central scene fitting
(default=10)

d.	 [--N_pairwise] (int) - optional pixel-averaging parameter for edge error met-
rics (default=20)

e.	 [--N_self] (int) - optional pixel-averaging parameter for central scene error
metrics (default=10)

f.	 [—-bin_size] (int) - optional bin size for density calculation in sparse data
cloud fitting (default=100)

g.	 [--flag_sparse] (int) - optional flag for sparse data cloud filtering (choose 0 or
1, default=0)

h.	 [--flag_diff] (int) - optional flag for exporting differential height maps
(choose 0 or 1, default=0)

i.	 [--flag_error] (int) - optional flag for exporting .json error metric files (choose
0 or 1, default=0)

j.	 [--numLooks] (int) - number of looks in the correlation estimation (de-
fault=20)

k.	 [--noiselevel] (float) - sensor thermal noise level (ALOS’s value hardcoded as
default if no value provided)

l.	 [--flag_proc] (int) - flag for InSAR processor selection (choose 0 for ROI_PAC
or 1 for ISCE, default=0)

m.	 [--flag_grad] (int) - flag for correction of large-scale temporal change gradi-
ent (choose 0 or 1, default=0)

There are no direct outputs from this script, as all the file outputs are created within the
scripts that are called by this main script.

The scripts called by forest_stand_height.py are: auto_tree_height.py, read_linkfile.
py, intermediate.py, intermediate_self.py, auto_mosaicking_new.py, write_deltaSC.
py, write_mapfile_new.py, write_diff_height_map.py, and cal_error_metric.py

2.	 auto_tree_height_many.py is called by the forest_stand_height. This script ex-
tracts data from ROI_PAC/ISCE output files and formats them for use in the rest
of the scripts. For each scene, this script runs auto_tree_height_single.py, and
then saves the output correlation magnitudes, kz, and coordinates in a .mat file,
and geo data (lines, samples, corner latitude and longitude, and latitude and
longitude step size) in a text file.

The command line call for this script is python directory_of_scripts/auto_tree_height_
many.py scenes flagfile directory

The inputs for auto_tree_height_many.py are:

•	 scenes (int) - number of scenes in the data set

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 directory (string) - directory path of where the input and output files are
located

•	 [--numLooks] (int) - number of looks in the correlation estimation (de-
fault=20)

•	 [--flag_proc] (int) - flag for InSAR processor selection (input 0 for ROI_
PAC or 1 for ISCE, default=0)

•	 [--flag_grad] (int) - flag for correction of large-scale temporal change
gradient (input 0 or 1, default=0)

The outputs for this script are:

•	 scenename_orig.mat - .mat file that stores correlation map, kz value, and
corner coordinates

•	 scenename_geo.txt - text file that stores the geodata (width, lines, corner
lat and lon, and lat and lon step values)

Auto_tree_height_many.py calls auto_tree_height_single_ROIPAC and auto_tree_
height_single_ISCE.

3.	 auto_tree_height_single_ROIPAC.py calls the script read_rsc_data.py in order
to read the value of the given parameter from the rsc file produced by ROI_PAC
processing of SAR data. This script also calls remove_corr_bias.py to remove cor-
relation bias associated with ROI_PAC. This script is called by auto_tree_height_
many.py and cannot be run in the terminal on its own as it needs to be iterated
for each scene in the analysis.

The inputs for this script are:

•	 directory (string) - directory path of where the input and output files are
located

•	 date1 (string) - date of the first image of the interferogram (format how-
ever they are listed in the scene data text file, such as 070911 for Sep-
tember 11, 2007)

•	 date2 (string) - date of the second image of the interferogram (same for-
mat as date1)

•	 numLooks (int) - number of looks in the correlation estimation

•	 noiselevel (float) - sensor thermal noise level (ALOS’s value hardcoded
as default)

•	 flag_grad (int) - flag for correction of large-scale temporal change gradi-
ent (input 0 or 1)

THE SAR HANDBOOK	

The outputs for this script are:

•	 corr_vs (numpy array) - aray of the correlation magnitudes

•	 kz (float) - kz parameter

•	 coords (numpy array) - array of max lat and lon values in the format
[north, south, west, east]

•	 geo_width (int) - number of columns of image data

•	 geo_nlines (int) - number of rows of image data

•	 corner_lat (float) - max latitude value (north)

•	 corner_lon (float) - min latitude value (west)

•	 step_lat (float) - latitude pixel size in decimal degrees

•	 step_lon (float) - longitude pixel size in decimal degrees

4.	 read_rsc_data.py reads a parameter from the ROI_PAC.rsc text output file. This
script is called by auto_tree_height_single_ROIPAC.py and is not meant to be
run in the terminal.

Inputs for this script are:

•	 filename (string) - file name of the ROI_PAC text output file containing
the desired parameter (may include subdirectories containing the ROI_
PAC output files - everything lower than the main file directory)

•	 directory (string) - directory path of where the input and output files are
located

•	 param (string) - name of the desired parameter

Outputs for this script are the parameter values as floats (result)

5.	 auto_tree_height_single_ISCE.py calls remove_corr_bias.py to remove correla-
tion bias associated with ISCE. This script is called by auto_tree_height_many.py
and cannot be run in the terminal on its own since it needs to be iterated for each
scene in the analysis.

The inputs for this script are:

•	 directory (string) - directory path of where the input and output files are
located

•	 date1 (string) - date of the first image of the interferogram (format how-
ever they are listed in the scene data text file, such as 070911 for Sep-
tember 11, 2007)

•	 date2 (string) - date of the second image of the interferogram (same for-
mat as date1)

•	 numLooks (int) - number of looks in the correlation estimation

•	 noiselevel (float) - sensor thermal noise level (ALOS’s value hardcoded as

default if no value provided)

•	 flag_grad (int) - flag for correction of large-scale temporal change gradi-
ent (input 0 or 1)

The outputs for this script are:

•	 corr_vs (numpy array) - aray of the correlation magnitudes

•	 kz (float) - kz parameter

•	 coords (numpy array) - array of max lat and lon values in the format
[north, south, west, east]

•	 geo_width (int) - number of columns of image data

•	 geo_nlines (int) - number of rows of image data

•	 corner_lat (float) - max latitude value (north)

•	 corner_lon (float) - min latitude value (west)

•	 step_lat (float) - latitude pixel size in decimal degrees

•	 step_lon (float) - longitude pixel size in decimal degrees

6.	 intermediate.py calculates the overlap between each pair of images. This script is
called by forest_stand_height.py.

To run in the terminal, enter the command: python directory_of_scripts/intermediate.
py edges start_scene linkfile maskfile flagfile ref_file directory

The inputs for this script are:

•	 edges (int) - number of edges (aka scene-scene borders)

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth forest height data

•	 linkarray (numpy array) - array of the scene pairs that correspond to each
edge in the format array([[scene1, scene2], [scene1, scene3], etc])

•	 maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable)

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 ref_file (string) - filename of the reference data raster file

•	 directory (string) - directory path of where the input and output files are
located

There’s no direct output for this script since all file outputs are created in subprocesses.

Intermediate.py calls intermediate_self.py and intermediate_pairwise.py.

	 THE SAR HANDBOOK

7.	 remove_corr_bias.py removes the correlation bias associated with processing by
ROI_PAC or ISCE.

The inputs for this script are:

•	 C (numpy array) - correlation magnitude array

•	 numLooks (int) - number of looks in the correlation estimation

The output for this script is YC (numpy array) - correlation magnitude array (with bias
removed)

8.	 intermediate_pairwise.py calculates the overlap between each pair of scenes,
reading the data directly from auto_tree_height_single rather than from an in-
termediary file. This script in turn calls flag_scene_file.py and remove_nonfor-
est.py. This script is called by auto_tree_height_single.py and is not meant to be
run from the terminal.

The inputs for this script are:

•	 flag1 (int) - flag value of one scene in the pair

•	 flag2 (int) - flag value of the other scene in the pair

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable)

•	 directory (string) - directory path of where the input and output files
are located

•	 filename1_orig.mat: correlation map and associated parameters for the
first scene (generated in previous steps)

•	 filename2_orig.mat: correlation map and associated parameters for the
second scene (generated in previous steps)

The outputs for this script are link files: one for each overlapping edge region, with the
filename format flag1_flag2.mat

9.	 intermediate_self.py calculates the overlap between the forest height validation
data and central scene. This script in turn calls flag_scene_file.py and remove_
nonforest.py. This script is called by intermediate.py and is not meant to be run
from the terminal.

The inputs for this script are:

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth data

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 directory (string) - directory path of where the input and output files are
located

•	 filename_orig.mat: correlation map and associated parameters for the
central scene (generated in previous steps)

•	 reference data raster file (already exists; main input)

The output for this script is self.mat, a link file for the central scene-ground truth over-
lap region

10.	 flag_scene_file.py associates flag numbers with the name, dates, ALOS location
(frame and orbit), and polarization of each scene. This script is called by inter-
mediate_pairwise.py, write_deltaSC.py, and write_mapfile_new.py and is not
meant to be run from the terminal.

The inputs for this script are:

•	 flagfilename (string) - file name of the file that lists all the flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 flag (int) - flag of the desired scene

•	 directory (string) - directory path of where the input and output files are
located

The output for this script is a data_array (list) - list of the data associated with the given
flag number.

11.	 remove_nonforest.py removes all non-forest areas from the image based on
the non-forest mask_file. This script is called by intermediate_pairwaise.py and
write_mapfile_new.py and is not meant to be run in the terminal.

The inputs for this script are:

•	 I (numpy array) - the image data

•	 func_coords (numpy array) - array of corner coordinates

•	 maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable)

•	 directory (string) - directory path of where the input and output files are
located

The output for this script is O (numpy array) - image without the non-forest sections.

12.	 auto_mosaicking_new.py calculates the S and C parameters automatically by
iterating through all the scenes in preparation for forest height estimation. This
script is called by forest_stand_height.py. auto_mosaicking_new.py calls ls_del-
taSC.py and read_linkfile.py

To run in the terminal, enter the command: python directory_of_scripts/auto_mosa-
icking_new.py scenes edges start_scene N linkfile directory

THE SAR HANDBOOK	

The inputs for this script are:

•	 scenes (int) - number of scenes in the data set

•	 edges (int) - number of edges (aka scene-scene borders)

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth data

•	 N (int) - number of iterations to run the nonlinear least squares part of
the model

•	 Linkfile - the filename of the file that lists all the edge scene pairs.

•	 linkarray (numpy array) - array of the scene pairs that correspond to each
edge in the format array([[scene1, scene2], [scene1, scene3], etc])

•	 directory (string) - directory path of where the input and output files are
located

•	 [--Nd_pairwise] (int) - pixel-averaging number for image fitting between
two overlapped radar scenes (default=20)

•	 [--Nd_self] (int) - pixel-averaging number for image fitting between sin-
gle radar scene and the overlapped ground truth data (default=10)

•	 [--bin_size] (int) - bin size for density calculation in scatter plot fitting
when ground truth data are sparse (default=100)

•	 [--flag_sparse] (int) - flag for sparse data cloud fitting (input 0 or 1, de-
fault=0)

The outputs produced by this script are iteration files (.json format; e.g. “SC_#_iter.
json” for “#”th iteration) that store the increment steps of S and C parameters and the
residual; no values are returned by the function.

13.	 ls_deltaSC.py runs least squares on the change in S and C parameters. This script
in turn calls cal_KB.py. This script is called by auto_mosaicking_new.py and is
not meant to be run from the terminal.

The inputs for this script are:

•	 dp (numpy array) - array of increment steps of S and C parameter values

•	 edges (int) - number of edges (aka scene-scene borders)

•	 scenes (int) - number of scenes in the data set

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth data

•	 linkarray (numpy array) - array of the scene pairs that correspond to each
edge in the format array([[scene1, scene2], [scene1, scene3], etc])

•	 directory (string) - directory path of where the input and output files are
located

•	 Nd_pairwise (int) - pixel-averaging number for image fitting between
two overlapped radar scenes

•	 Nd_self (int) - pixel-averaging number for image fitting between single

radar scene and the overlapped ground truth data

•	 bin_size (int) - bin size for density calculation in scatter plot fitting

•	 flag_sparse (int) - flag for sparse data cloud filtering (input 0 or 1)

The outputs for this script are:

•	 changeSC (numpy array) - updated S and C parameters as referenced to
the average S (=0.6) and C (=13)

•	 res (float) - residual k and b error compared to k = 1 and b = 0

14.	 cal_KB.py calculates the K and B parameters. This script in turn calls cal_KB_
pairwise_new.py and cal_KB_self_new.py. This script is called by ls_deltaSC.py
and is not meant to be run from the terminal.

The inputs for this script are:

•	 R (float) - R parameter for this edge

•	 RSME (float) - RSME parameter for this edge

•	 R_RSME_files: one for each edge with the filename format scene1_
scene2_I1andI2.json

The output for this script is YY (numpy array), an array of k and b values.

15.	 cal_KB_pairwise_new.py calculates K and B between image pairs. In turn, this
script calls arc_sinc.py, mean_wo_nan.py, extract_scatterplot_density.py, and
remove_outlier.py. This script is called by cal_KB and is not meant to be run in
the terminal.

The inputs for this script are:

•	 scene1 (int) - flag value of one scene in the pair

•	 scene2 (int) - flag value of the other scene in the pair

•	 deltaS1 (float) - change in S value for one scene in the pair

•	 deltaC1 (float) - change in C value for one scene in the pair

•	 deltaS2 (float) - change in S value for the other scene in the pair

•	 deltaC2 (float) - change in C value for the other scene in the pair

•	 directory (string) - directory path of where the input and output files are
located

•	 Nd_pairwise (int) - pixel-averaging number for image fitting between
two overlapped radar scenes

•	 bin_size (int) - bin size for density calculation in scatter plot fitting

•	 link files: one for each overlapping edge region, with the filename format
scene1_scene2.mat (generated in previous steps)

The outputs for this script are:

•	 k (float) - k parameter for this edge

•	 b (float) - b parameter for this edge

	 THE SAR HANDBOOK

16.	 cal_KB_self_new.py calculates K and B between the central image and the for-
est height validation data. In turn, this script calls arc_sinc.py, mean_wo_nan.
py, extract_scatterplot_density.py, and remove_outlier.py. This script is called by
cal_KB and is not meant to be run in the terminal.

The inputs for this script are:

•	 deltaS2 (float) - change in S value for the central scene

•	 deltaC2 (float) - change in C value for the central scene

•	 directory (string) - directory path of where the input and output files are
located

•	 Nd_self (int) - pixel-averaging number for image fitting between single
radar scene and the overlapped ground truth data

•	 bin_size (int) - bin size for density calculation in scatter plot fitting

•	 flag_sparse (int) - flag for sparse data cloud filtering (input 0 or 1)

•	 self.mat: link file for the central scene-ground truth overlap region (gen-
erated in previous steps)

The outputs for this script are:

•	 k (float) - k parameter for this edge

•	 b (float) - b parameter for this edge

17.	 arc_sinc.py calculates the inverse sinc function as part of calculating K and B val-
ues. This script is called by cal_KB_pairwise and write_mapfile_new.py and is
not meant to be run in the terminal.

The inputs for this script are:

•	 X - A numpy array of x values for the inverse sinc function

•	 c_parama - C parameter (float) from the Forest Stand Height model

The outputs for this script are:

•	 y - a numpy array of y values of inverse sinc function satisfying x=sinc(y/C)

18.	 mean_wo_nan.py calculates and returns the mean of all number values in an
array as part of calculating K and B values. This script is called by cal_KB_pair-
wise_new.py and is not meant to be run in the terminal.

Inputs for this script are:

•	 A (numpy array) - input array of values

Outputs for this script are:

•	 mean of B (A excluding NaN values) (float)

19.	 extract_scatterplot_density.py calculates the 2D histogram of the scatterplot
between pairs of forest height and returns the forest height pairs with relatively
large density. This script is intended to replace remove_outlier.py in order to dis-
tinguish between forest disturbance and forest height estimation. This script is
called by cal_KB_pairwise and is not intended to be run in the terminal.

The inputs for this script are:

•	 x (numpy array) - array of x values of points

•	 y (numpy array) - array of y values of points

•	 bin_size (int) - bin size for density calculation in scatter plot fitting (de-
fault = 100)

•	 threshold (float) - density threshold (default = 0.5)

The outputs for this script are:

•	 Hm_den (numpy array) - array of x values of the points with densities
above the inputted threshold

•	 Pm_den (numpy array) - array of y values of the points with densities
above the inputted threshold

20.	 remove_outlier.py this script is called by cal_KB_self_new.py, cal_KB_pair-
wise.py, cal_KB_pairwise_new.py, cal_error_metric_pairwise.py, and cal_er-
ror_metric_self.py to remove outliers, and is supplemented by the function of
extract_scatterplot_density.py.

The inputs for this script are:

•	 x (numpy array) - array of x values of points

•	 y (numpy array) - array of y values of points

•	 win_size (float) - window size to search for neighboring points (defaults
to 0.5)

•	 threshold (int) - number of neighboring points needed within the win-
dow to not count as an outlier (defaults to 5)

The outputs for this script are:

•	 XX (numpy array) - array of x values of the points excluding those counted
as outliers

•	 YY (numpy array) - array of y values of the points excluding those counted
as outliers

21.	 read_linkfile.py reads in a text file containing a list of all the scene pairs and
returns a 2D array of the pairs. This script is called by auto_mosaicking_new.py

To run this script in the terminal, use the following command: python directory_of_
scripts/read_linkfile.py edges filename directory

THE SAR HANDBOOK	

The inputs for this script are:

•	 edges (int) - number of edges (aka scene-scene borders)

•	 filename (string) - file name of the file that lists all the edge scene pairs

•	 directory (string) - directory path of where the input and output files are
located

The outputs for this script is linkarray (numpy array) - array of the scene pairs that
correspond to each edge in the format array([[scene1, scene2], [scene1, scene3], etc])

22.	 write_deltaSC.py calculates the temporal change parameters (S and C) as refer-
enced to the average values: S=0.6, C=13 based on the final iteration. This script is
called by forest_stand_height.py. write_deltaSC.py in turn calls flag_scene_file.
py.

To run in the terminal, enter the command: python directory_of_scripts/write_del-
taSC.py scenes N flagfile directory

The inputs for this script are:

•	 scenes (int) - number of scenes in the data set

•	 N (int) - number of iterations to run the nonlinear least squares part of
the model

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 directory (string) - directory path of where the input and output files are
located

•	 SC_#_iter.json: final iteration file (generated in previous steps)

The output for this script is one file per scene that contains delta S and C. The file name
format is “scenename_tempD.json”

23.	 write_mapfile_new.py calculates and writes the tree height map to a file. This
script is called by forest_stand_height.py. This script calls flag_scene_file.py,
arc_sinc.py, remove_nonforest.py and write_file_type.py.

The inputs for this script are:

•	 scenes (int) - number of scenes in the data set

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable) (optional - if no mask available use ‘-’
as an input to forest_stand_height.py)

•	 directory (string) - directory path of where the input and output files are
located

•	 output_files (string) - list of the desired output file types formatted as a
single string (e.g. “kml json tif”)

•	 scenename_orig.mat: correlation map and associated parameters for the
central scene (generated in previous steps)

•	 scenename_tempD.json: delta S and C files produced (generated in pre-
vious steps)

There’s no direct output (all file output created in write_file_type.py).

24.	 write_file_type.py writes the input array from the tree height map or the diff_
height map to a file, with the file type depending on input parameters: gif, json,
kml, mat, or tif. In turn this script calls read_geo_data.py. This script is called by
write_mapfile_new.py and is not meant to be run in the terminal.

The inputs for this script are:

•	 data (numpy array) - array to be written to the file

•	 outtype (string) - string to signify which input (tree height “stand_height”
or differential height “diff_height”) is being output

•	 filename (string) - scene file name

•	 directory (string) - directory path of where the input and output files are
located

•	 filetype (string) - file extension for the desired output file type (.gif, .json,
.kml, .mat, and .tif accepted -> input without the “.” (e.g. “kml” instead
of “.kml”)

•	 coords (numpy array) - array of max lat and lon values in the format
[north, south, west, east]

•	 reffile (string) - reference filename containing ground truth data (option-
al; only needed for differential height map)

The outputs for this script are output files(s) of the array image saved in the file type
specified in the input.

25.	 read_geo_data.py reads in latitude, longitude, pixel size, and image size from a
GeoTIFF or text file based on ROI_PAC output. This script is called by write_file_
type.py and is not meant to be run in the terminal.

Inputs for this script are:

•	 coord_file (string) - file name of the input data file with the location infor-
mation (lat/long, step size, image size)

•	 directory (string) - directory path of where the input and output files are
located

	 THE SAR HANDBOOK

Outputs for this script are:

•	 width (int) - width/number of columns of the image

•	 nlines (int) - lines/number of rows of the image

•	 corner_lat (float) - latitude of the upper left corner

•	 corner_long (float) - longitude of the upper left corner

•	 post_lat (float) - latitude step size

•	 post_long (float) - longitude step size

26.	 write_diff_height_map.py writes the forest differential height map between SAR
and overlapping forest height ground truth images. This script is called from for-
est_stand_height if the parameter --flag_diff is entered.

Inputs for this script are:

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth data

•	 reffile (string) - reference filename containing ground truth data

•	 flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

•	 maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable) (optional; if no masks are available,
use ‘-’ as an input to forest_stand_height.py)

•	 directory (string) - directory path of where the input and output files are
located

•	 output_files (string) - list of the desired output file types formatted as a
single string (e.g. “kml json tif”)

There is no direct output for this script, as all file output is created in write_file_type.py.

27.	 cal_error_metric.py calculates the R and RMSE error metrics for the model. This
script is called from forest_stand_height.py if the parameter --flag_error is en-
tered. This script calls cal_error_metric_pairwise.py and cal_error_metric_self.
py.

The inputs for this script are:

•	 dp (numpy array) - array of increment steps of S and C parameter values

•	 edges (int) - number of edges (aka scene-scene borders)

•	 start_scene (int) - flag value of the central scene that overlaps the ground
truth data

•	 link (numpy array) - array of the scene pairs that correspond to each edge
in the format array([[scene1, scene2], [scene1, scene3], etc])

•	 directory (string) - directory path of where the input and output files are

located

•	 N_pairwise (int) - pixel-averaging number for scatter plot

•	 N_self (int) - pixel-averaging number for scatter plot

The output for this script is YY, a numpy array of R and RMSE values.

28.	 cal_error_metric_pairwise.py calculates the R and RMSE error metrics. This
script calls arc_sinc.py, mean_wo_nan.py and remove_outlier.py. It is called by
cal_error_metric.py and is not meant to be run in the terminal.

The inputs for this script are:

•	 scene1 (int) - flag value of one scene in the pair

•	 scene2 (int) - flag value of the other scene in the pair

•	 deltaS1 (float) - change in S value for one scene in the pair

•	 deltaC1 (float) - change in C value for one scene in the pair

•	 deltaS2 (float) - change in S value for the other scene in the pair

•	 deltaC2 (float) - change in C value for the other scene in the pair

•	 directory (string) - directory path to where the input and output files are
located

•	 N_pairwise (int) - pixel-averaging number for the scatter plot

•	 link files: one for each overlapping edge region, with the filename format
scene1_scene2.mat (generated in previous steps)

The outputs for this script are:

•	 R (float) - R parameter for this edge

•	 RSME (float) - RSME parameter for this edge

•	 R_RSME_files: one for each edge, with the filename format scene1_
scene2_I1andI2.json

29.	 cal_error_metric_self.py calculates R and RMSE between the central image and
the forest height ground validation data. This script calls arc_sinc.py, mean_wo_
nan.py, and remove_outlier.py. This script is called by cal_error_metric.py and is
not meant to be run in the terminal.

The inputs for this script are:

•	 deltaS2 (float) - change in S value for the central scene

•	 deltaC2 (float) - change in C value for the central scene

•	 directory (string) - directory path of where the input and output files are
located

•	 N_self (int) - pixel-averaging number for scatter plot

•	 self.mat: link file for the central scene-ground truth overlap region (gen-
erated in previous steps)

The output for this script is YY (numpy array) - array of R and RMSE values.

