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3.1  SAR for Mapping 
Deforestation and Forest 
Degradation

As a vital natural resource, forests provide a host 
of ecosystem services, including carbon sequestra-
tion, diverse natural habitats for flora and fauna, and 
they are a key source of food and fiber for human 
consumption. Today, many nations have entered in-
ternational or regional agreements (e.g., the United 
Nations’ Framework Convention of Climate Change 
- Reducing Emissions from Deforestation or Forest 
Degradation (UNFCCC-REDD+)) to protect their for-
est resources. Tracking deforestation rates annually 
and developing early warning systems of forest loss 
(often from illegal activities) are essential. Remote 
sensing of forest change has an important role in this 

monitoring effort. While optical data have long been 
the workhorse for forest monitoring, the advent of 
operational SAR data availability offers an invaluable 
complement with a crucial sensitivity: microwave 
remote sensors are largely cloud-penetrating and 
thus guarantee continuous monitoring, even under 
cloudy skies. For tropical nations, this is particularly 
important as continuous cloud cover severely limits 
the availability of optical data at medium resolution 
(Kellndorfer et al. 2014, Mitchell et al. 2017).

3.2  Brief Review of Color 
Theory for Interpreting SAR 
Images

SAR backscatter images are representations of the 
microwave portion of the electromagnetic spectrum, 

and as such always represent grayscale or false col-
or combinations mapped to the human visual color 
space. This is analogous to the false color represen-
tation of multispectral optical remote sensing imag-
ery from bands outside the visual spectrum. (Please 
note that in this chapter, “SAR image” shall refer to 
a grayscale or multi-band image of SAR backscatter, 
calibrated to g0 with a Radiometric Terrain Correction 
(RTC) approach (see Chapter 2)).

3.2.1  GRAYSCALE DISPLAY OF SAR IMAGERY

A single-band SAR image (i.e., from one frequen-
cy and one polarization) is displayed such that low 
backscatter values correspond to dark colors and 
high backscatter values correspond to bright colors. 
Enhancements can be applied, like linear or histo-
gram stretches. Examples of SAR backscatter images 
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Figure 3.1   Location of the example 
Military Grid Reference System (MGRS) tile 
18MTE in Ecuador used in this chapter.

http://earth-info.nga.mil/GandG/update/index.php?dir=coordsys&action=mgrs-100km-polyline-dloads
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from Sentinel-1 are shown in Figure 3.2 for a land-
scape scale subset in Ecuador and in Figure 3.3 for 
a large oil palm plantation just to the north of Puerto 
Francisco. 

3.2.2  COLOR DISPLAY OF SAR IMAGERY

For the interpretation of SAR imagery, it is useful 
to briefly review the basics of how multichannel SAR 
imagery is displayed. Tables 3.1 and 3.2 may be 
used as resources for understanding colors when 
displaying false color SAR Images (see Henderson & 
Lewis 1998).

Table 3.1 describes how the combination of 
grayscale imagery assigned to the Red/Green/Blue 
(RGB) bands would lead to the resulting colors when 
the extreme dark (black) and bright (white) colors are 
combined. This is useful when interpreting an RGB 

multitemporal color image. For example, assume that 
three dates are combined as per Table 3.2, with the 
earliest acquisition in red, the second acquisition in 
green, and the newest acquisition in blue. If a red col-
or is seen for a pixel, according to Table 3.1, the red 
layer is close to white (bright backscatter), while the 
subsequent acquisitions are close to black (dark back-
scatter). Thus, the backscatter drops after the first ac-
quisition, which is often a sign of deforestation or a 
degradation event. Note that for forest applications in 
particular, it is always useful to assign cross-polarized 
data, which are more related to volume scattering of 
the canopies to the green band. Co-polarized data 

(VV or HH) are suited for the red band, where surface 
scattering components are more pronounced. When 
only dual-polarimetric data are available (e.g., L-HH/
HV from ALOS, or C-VV/VH from Sentinel-1), a color 
SAR image is often constructed by assigning the ratio 
of co-polarized to cross-polarized data to the blue 
channel. Note that for multi-polarized images with 
only two polarizations, the co-polarized band is often 
assigned to red, the cross-polarized to green, and the 
ratio of co-/cross-polarized data to the blue channel.

Examples for Sentinel-1 C-band and ALOS-1 
L-band data are shown in Figures 3.4 and 3.5, 
respectively. The images show the Napo river in the 

Figure 3.2  Grayscale Sentinel-1 amplitude image in Ecuador. The area is mostly forested, with 
the Coca and Napo Rivers, Puerto Francisco, and an oil palm plantation being dark and bright 
prominent features. The Andes touch the western part of this image. The backscatter histogram 
in the right panel contains values ranging from about –23 to 0 dB, peaking at about –6 dB.

Figure 3.3 Google Earth and Sentinel-1 images of a subset of the large oil palm plantation. While the 
river and most agricultural fields exhibit dark colors, the various states of regrowth in the oil palm 
plantation correspond to different gray values.

Table 3.1 Color assignments and resultant colors 
for multi-dimensional SAR image composites 
(Manual of Remote Sensing, Vol. 2, 1998).

Img  Layer 1 Img  Layer 2 Img Layer 3 Resultant
Blue Green Red Color

Tonal Change on Image

White Black Black Blue

Black White Black Green

Black Black White Red

White White Black Cyan

White Black White Magenta

Black White White Yellow

No Tonal Change on Image
White White White White

Black Black Black Black

Grey Grey Grey Grey

Table 3.2 Often-used color scheme for 
multi-dimensional false color SAR composites 
(Manual of Remote Sensing, Vol. 2, 1998).

Type of Composite Assigned Color

BLUE GREEN RED

Multifrequency/band Shortest λ Middle λ Longest λ

Multitemporal (date) First 
(earliest)

Second Third 
(Latest)

Multipolarized Most to Least Common
(HH) (HV/VH) (VV)
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southeast, an oil palm plantation in the northeast, 
primary rainforest in the northwest, and active fish-
bone logging patterns in the southwest. The color 
composites are constructed from dual-polarimetric 
data with co-polarized data assigned to the red chan-
nel, cross-polarized data to the green channel, and 
the co-/cross-polarized ratio to the blue channel. A 
nice effect for forest applications with this color as-
signment strategy is that forests tend to be shown 
in shades of green, and typically the brightness of 
green corresponds to the amount of biomass in the 
forest. Also, water tends to be represented in blue 
colors, which also represent other surface scattering 
components. Naturally, different histogram stretches 
may be applied to enhance various surface compo-
nents. In these examples, it is remarkable that both 
C-VV/VH and L-HH/HV false color SAR composites over 
this predominantly forested landscape exhibit similar 
color impressions. Differences are notable, however, 
foremost by the appearance of some dark green color 
in agricultural areas in the C-band composite. This like-
ly stems from higher sensitivity to volume scattering 
from agricultural crops, which have less of a volume 
scattering component at L-band. 

3.3  Review of SAR 
Characteristics for Forest 
Mapping

SAR backscatter values are determined by two 
main groups of characteristics: sensor and target char-
acteristics. The first group includes the frequency/
wavelength of the SAR, polarization of the transmitted 
and received SAR signal, incidence angle of the radar 
beam interacting with the ground, and look direction 
of the sensor. The combination of these characteristics 
needs to be considered when interpreting and ana-
lyzing SAR imagery. It is often ill-advised to combine 
SAR imagery from a set of varying sensor parameters 
if the backscatter data are not carefully cross-calibrat-
ed. For time series analysis in particular, it is advisable 
to analyze data from the same sensor characteristics, 
otherwise signal variations can be misinterpreted as 
true change, though no change has actually occurred. 
The following sections review with examples the main 
sensor characteristics to point to these differences. 

Figure 3.4 Sentinel-1 C-band dual polarimetric VV and VH data: (a) VV, (b) VH, (c) VV/VH ratio, and (d) 
SAR false color composite with RGB = VV/VH/ratio channel assignment. Image acquired on May 31, 2018.

Figure 3.5 ALOS-1 L-band dual-polarimetric HH and HV data: (a) HH, (b) HV, (c) HH/HV ratio, and (d) SAR 
false color composite with RGB = HH/HV/ratio channel assignment. Same area as in Figure 3.4, acquired 
~10 years earlier on June 22, 2008.
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The other group of characteristics determining 
SAR backscatter of forests and other natural and 
manmade targets are related to target characteristics. 
In general, assuming constant imaging sensor char-
acteristics, SAR backscatter is a function of a target’s 
moisture content and structural characteristics. For 
forests, this means that forest volume (biomass) and 
structural complexity (forest trunks, branches, and 
leaves) can indicate species present (e.g., pines vs. 
deciduous). Unlike optical imagery, if sensor parame-
ters are stable—as is the case with most repeat-pass 
orbiting SAR sensors—signal variations at any given 
pixel location are only a function of these target char-
acteristics. Sun angle variations seen in optical data 
do not affect the active SAR sensing system. Also, at-
mospheric variations (including clouds) have (almost) 
no impact on the SAR signal; however, there are nota-
ble and important exceptions at shorter wavelength 
SARs when heavy active rain events are encoun-
tered, as seen in C-band observations over tropical 
environments. Thus, when analyzing radar signals, 
it is important to recognize that moisture changes 
in both soil and vegetation strongly determine SAR 
backscatter. For some key concepts in understanding 
SAR backscatter from forests and natural vegetation, 
see Ulaby et al. 1986, 1989, 1990, 2014; Henderson 
& Lewis 1998; Woodhouse 2006; and Kellndorfer & 
McDonald 2008.

3.3.1  ROLE OF FREQUENCY IN FORESTS

SAR frequency determines the wavelength of the 
electromagnetic wave interacting with targets such as 
forests. In a nutshell, the longer the wavelength (i.e., 
the smaller the frequency), the more a wave pene-
trates into forest canopies and interacts with larger 
parts of the forest volume. In a simplistic view, one 
can attribute X-band (at about 3 cm) to mostly crown 
and small branch and leaf/needle scattering. C-band 
(5 cm) penetrates somewhat deeper into crowns and 
scatters on medium-sized branches. L-band (23 cm) 
and P-band (40 cm) have strongest penetration ca-
pacity and interact with larger parts of trees like big 
branches and trunks (see Chapter 2, Fig.  2.6). 
As such, L-band and longer wavelengths are often 
connected with a strong “double-bounce” scattering 
component, where the incident energy is scattered 

forward towards the ground where it bounces back 
to the sensor (similar to a racquetball or squash). This 
double-bounce effect is invaluable for detecting be-
low-canopy flooding effects where inundation with 
standing water below a tree acts as a strong reflect-
ing surface in the forward direction back to the SAR 
instrument. In tropical forest environments, riparian 
forests are thus extremely bright in SAR imagery 
when flooded (Fig. 3.6). 

Figures 3.7 and 3.8 show L- and C-band back-
scatter images of the oil palm plantation in Ecuador. 
Although the C-band data are from a timeframe of 10 
years after the L-band acquisitions, most notably, the 
relative absence of very dark surfaces in the C-band 
data points to strong backscatter from rough surfaces 
at the shorter wavelengths, whereas at the L-band, 
surfaces appear smoother (hence, darker) when little 
or no vegetation is present. 

3.3.2  ROLE OF POLARIZATION IN FORESTS

It is important to consider the polarization of 
radar waves interacting with forests, as it deter-
mines how the signal interacts with trunks and 
crown components. Figure 3.9 shows a simpli-
fied diagram of how long and short wavelengths at 
horizontal and vertical polarizations interact with 
forests. Most important is that backscatter from 
co-polarization (VV, HH) (i.e., same transmit and 
receive components) is typically stronger for sur-
face scattering components, whereas energy mea-
sured from cross-polarized (VH or HV) detection 
(i.e., measuring energy returning at a 90° offset to 
the transmitting wave) is associated with measur-
ing volume scattering. Chapter 2, Section 2.2.3 
provides a good background about polarization and sur-

Figure 3.6 Double-bounce effect from bellow-canopy flooding at L-HH polarization from ALOS-1: (a) 
Low-water season and (b) high-water season. Note the brightening of the forests during inundation.

Figure 3.7 ALOS-1 L-band imagery for the oil 
palm plantation: (a) L-HH, (b) L-HV, (c) ratio, and 
(d) RGB composite LHH/LHV/ratio.

Figure 3.8 Sentinel-1 C-band imagery for the oil 
palm plantation: (a) C-VV, (b) C-VH, (c) ratio, and 
(d) RGB composite CVV/CVH/ratio.
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face scattering types. Thus, for biomass applications, for-
est degradation tracking, and identifying changes from 
volumes to surfaces, cross-polarized observations with 
SAR imagery are essential. The differences between like 
and cross-polarized imagery from the C- and L-bands of 
the oil palm plantation are visible in Figures 3.7 and 
3.8. It can clearly be seen at both L-HH or C-VV that large 
gray value ambiguities exist between forest canopies and 
non-forest regions. In the cross-polarized images, these 
distinctions are more readily made and less ambiguous. 
Note for example in the L-band image’s lower part in 
Figure 3.5 that the fishbone logging pattern visible in 
the HV polarization is not visible in the HH polarization. 

3.3.3  ROLE OF INCIDENCE ANGLE

The incidence angle describes the angle between 
the sensor and ground and the surface normal of the 
illuminated surface (see Chapter 2). SAR backscatter 
is strongly influenced by this angle, as it determines scat-
tering in the crown layer, trunks, and interactions with 
the ground. If slopes are tilted toward the sensor, stron-
ger backscatter can be expected. If slopes are tilted away 
from the sensor, weaker backscatter is to be expected. 
RTC will account for these effects to some degree; how-
ever, scattering behavior is strongly dependent on the 
type of surface cover. This effect is weaker over dense 
forested environments and stronger over sparse vegeta-
tion or bare soils. 

Figure 3.10 is an example from the Pacific North-
west of the United States where timber management 
involves clearcutting, selective logging, and replanting. 
The Sentinel-1 images show acquisitions in the subset 
from overlapping paths, one imaging the area closer to 
near range (steeper incidence angle) of the SAR sensor 
and one closer to far range (shallower incidence angle) 

of the sensor. While not immediately obvious, close in-
spection of the figure shows differences in the near- and 
far-range acquisitions only five days apart where no sig-
nificant rain events have changed moisture conditions. 
The rows show near- and far-range data for VV and VH 
data in the columns. A comparison of the top and bot-
tom figures in each column illustrates the differences 
stemming from variations in incidence angles from the 
overlapping paths. 

3.3.4  ROLE OF LOOK DIRECTION 
(ASCENDING/DESCENDING) DATA TAKES

The look direction of a SAR refers to the direction 
the radar antenna is pointed when emitting and re-
ceiving the radar beam. A SAR look direction is de-
termined with respect to the flight direction of the 

sensor (see Chapter 2, Sec. 2.1). It is analogous 
to sitting on the right or left side of an airplane and 
looking out the window. Typically, SAR sensors are 
configured to look either right or left. If the satellite 
is rotated, that direction can change. How an area is 
illuminated by a radar beam changes foremost with 
image acquisitions during ascending and descending 
overpasses of an area. Figure 3.11 exemplifies the 
effect of look direction from ascending or descending 
data. The image subset is from the Sentinel-1 cross-
over pass in northeast Ecuador at the location shown 
in the right-hand part of the figure. The left side of 
the figure shows from top to bottom the combined 
layover and shadow masks from ascending and de-
scending paths over a Google Earth subset. The cen-
ter figure shows the descending path, and the bottom 

VERTICAL

HORIZONTAL

Radar
Scattering 
Intensity

C = Crown T = Trunk

Short 
Wave

Long 
Wave

Figure 3.9 Schematic effects of polarization 
on backscatter of long and short wavelengths 
scattering from trunks and crowns.

Figure 3.10 Near- and far-range acquisitions of Sentinel-1 CVV and CVH data over a forested site in 
the Pacific Northwest.
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figure shows the ascending path. Differences in the 
backscatter can be seen as well as the varying loca-
tions of the layover and shadow masks (red color). 
Forest monitoring applications benefit from combin-
ing different look directions, as different regions will 
be mapped and complementary backscatter infor-
mation can be retrieved.

Figure 3.12 shows an example of look direction 
effects for forest observations in Chile from L-band. 
The city of Talca lies in the western part of the imag-
es and can be seen as a rose-colored blob, similar 
another smaller city farther north. Note that in the 
ascending data, these two cities turn green in the 
multi-polarization L-HH/L-HV/ratio image to assume 
the same backscatter levels as the forests south of 
Talca and on the Andean slopes in the eastern part 
of the images. Incidence angle might also contribute 
with near- and far-range observations, although the 
gamma naught values mostly flatten the backscatter 
in the narrow ALOS-1 swath of about a 70-km swath 
width. Thus, here look direction is mostly causing a 
change in how the city and forests are seen structur-
ally. Again, if time series analysis for change detection 
is targeted for forest monitoring, it is advisable to an-
alyze time series by repeat-pass orbits and not mix 
ascending and descending datasets. 

3.3.5  ROLE OF MOISTURE 

SAR is very sensitive to moisture in soils and 
vegetation, and also to standing open water and 
below-canopy standing water. Increased moisture 
content in soils and vegetation tend to increase the 
backscatter signals. Standing open water has very 
dark image characteristics due to most of its energy 
being scattered in the forward direction away from 
the sensor; however, when wind, currents, or boat 
engines rough up water surfaces, strong backscatter 
can originate from open water surfaces. In particular, 
shorter wavelengths like C- and X-bands have strong 
open water surface backscatter from rough water 
surfaces. At longer wavelengths, the aforementioned 
double-bounce effect under canopies can have a 
strong backscatter signal (Fig. 3.6). 

Figure 3.13 shows an example of moisture influ-
ence on the Sentinel-1 C-band data over Ecuador. The 

darkening effects are associated with actively raining 
strong tropical convection systems that cause signal 
attenuation. The brightening effects stem from wet 
vegetation and soils from the rain events associated 
with the tropical frontal system. Riverbeds are still 
seen in the midst of brightened backscatter areas in 
the affected image from February 27, 2017, confirm-

ing that the SAR signals indeed stem from an increase 
in vegetation and soil moisture. 

Figure 3.14 shows the effects of vegetation and 
soil moisture on signal brightening in L-band HH po-
larization from ALOS-1 at the Ecuador site. Three ac-
quisitions from the end of June 2008, 2009, and 2010 
are compared. While 2008 seems to have few effects 

Figure 3.12 ALOS-1 data over Chile, Talca, region from ascending and descending paths. RGB=L-
HH/L-HV/ratio. Red arrows indicate the look direction of the right-looking sensor.

Ascending superimposed 
on Descending

Descending

Talca Lon/Lat: W 71.7, S 35.5

Figure 3.11 Example showing the effects of 
look direction on backscatter and layover and 
shadow on Sentinel-1 C-VV/VH/ratio RGB data.
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Figure 3.13 Sentinel-1 CVV example of moisture influence on enhancing and darkening backscatter

Figure 3.14 ALOS-1 L-HH example of moisture influence on enhancing backscatter.
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from moisture-related backscatter enhancements, 
the year 2009 shows some effects in the eastern 
part of the image. In 2010, a strong moisture-related 
brightening is visible. As a result, the multitemporal 
color composite shows large-scale color variations 
that are moisture-related. Care must be taken when 
performing multitemporal image change detection for 
forest degradation so as to not to interpret darkening 
in a time series as a degradation signal when moisture 
variations can be the cause for decreases or increases 
in backscatter. Time series analysis can help to sepa-
rate these effects, as moisture variations are shorter 
in time and space and exhibit a more random pattern 
compared to real disturbance or deforestation signals.

3.3.6  ROLE OF STRUCTURE 

In addition to moisture conditions, vegetation 
structural characteristics determine SAR backscatter 
from forests. This includes both horizontal structure 
(i.e., canopy density, row plantations, texture) and 
vertical structure (i.e., crown depth, crown and trunk 
biomass, leaf and branching structure, life forms of 
trees, excurrent or decurrent growth). Figure 3.15 
provides a schematic overview of these structural 
classes (Dobson et al. 1996). 

Figure 3.16 provides an example of backscat-
ter response for C-VV and C-VH data for the oil palm 
plantation and its various growth, disturbance, and 
regrowth stages (including backscatter from undis-
turbed primary forest). The timing of the Google Earth 
subset corresponds to the C-band acquisition dates in 
September 2017. 

For L-band sensors, Figure 3.17 provides an ex-
ample from a timber management area in Louisiana, 
U.S. The area is heavily managed, and various stages 
of clearcutting, selective logging (row thinning), and 
regrowth can be seen. The cross-polarized data clearly 
show increased brightness where there are more ma-
ture, higher biomass forests. 

3.3.6  SUMMARY: DEFORESTATION AND 
FOREST DEGRADATION FROM A SAR POINT 
OF VIEW

In simple terms, broad characteristics of backscat-
ter behavior can be summarized as follows:

• Deforestation—Predominantly a change 
from volume to surface scattering. This means 

cross-polarized (VH, HV) backscatter decreases 
significantly. However, if deforestation results in 
rough soil conditions (e.g., slash) or if site prepa-
rations rough up soils, backscatter can be signifi-
cantly enhanced, to the point where actual felling 
events increase (e.g., until logs are removed). In 
time series observations, however, trends are to-
wards reduced backscatter. Moisture conditions 
of soils that are more visible now can enhance 
signals at C-band significantly and can introduce 
ambiguities. Time series signals will reveal those 
transitions.

• Degradation—Degradation of forests typi-
cally reduces volume scattering and (depending 
on the amount of degradation) how much soil 
contributes to the backscatter signal at the ob-
serving wavelength. At C-band, degradation is 
tough to detect unless larger patches of forest are 
removed. L-band tends to have a detectable sig-
nal drop from forest thinning. However, the type 
of degradation also determines the scattering 
mechanisms. For example, storm damage may 
be such that vegetation volumes and scattering 
mechanisms have enhanced backscatter from 
slanted trunks, which is difficult to separate from 
before-disturbance signal strength. Fire events 
have a strong increase at L-band, where stronger 
soil contributions enhance double-bounce and 
hence brighten the backscatter signal. Over time, 

as volume starts to significantly degrade, the SAR 
signal follows a pattern of backscatter decrease in 
degraded forests.

Table 3.3 gives an overview of the expected 
backscatter characteristics for different vegetation 
transition scenarios.

3.4  Appropriate SAR 
Preprocessing Methods for 
Forest Applications
3.4.1  WELL-CALIBRATED, RADIOMETRICALLY 
TERRAIN CORRECTED SAR DATA

Proper RTC of SAR data is a crucial starting point 
for any analysis of change detection, either bitem-
poral, in time series, or in combination with optical 
datasets (see Chapter 2 for RTC processing discus-
sion). A word of caution: as of this writing, the open 
source software SNAP delivered by the European 
Space Agency (ESA) has two known shortcomings: (1) 
geolocation inaccuracies up to 40 m in the range di-
rection and (2) radiometric correction that is subop-
timal given the novel approach by Small et al. (2012). 
For change detection purposes, careful co-regis-
tration after processing with SNAP (i.e., with image 
matching postprocessing) might overcome some of 
these issues. However, it is important to assess 
whether backscatter change stems from geometric 

Figure 3.15 Description of simple structural classes of vegetation (Dobson et al. 1996).

Herbaceous Woody

Growth Form Blade-like Broadleaf Shrubs Trees

Structural 
Characteristics: (i.e. grass, corn) (i.e. soybeans) (i.e. alder)

Excurrent Decurrent Columnar

Gymnosperms 
(i.e. pine)

Angiosperms 
Dicots  (i.e. oak)

Angiosperms 
Monocots (i.e. palm)

Trunks None None
Many small trunks 
with characteristic 

orientations

Conical trunk with 
layered dielectric

Cylindrical, 
forked trunk with 
layered dielectric

Cylindrical trunk 
of homogeneous 

dielectric

Branches Non-woody 
stalks or stems Non-woody stems Many small 

branches & stems

Branch size/orien-
tation varies with 
height; branches 
often long/thin

Forked branches, 
few horizontal el-
ements; branches 
often short/thick

None

Foliage Blade-like 
erectophile Broad leaves Blade-like or 

broad leaves Needles Broad leaves Blade-like clump 
at top of trunk
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Figure 3.16  Sentinel-1 C-band example of VV/VH backscatter in the oil palm plantation in Ecuador for 
different growth stages. Descending orbit (D).

Figure 3.17 ALOS-1 L-band data over a timber management region in southern Louisiana, U.S., showing 
various stages of clear cuts, selective logging, and regrowth. Ascending orbit (A).
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offsets rather than real change, particularly in hilly 
terrain. The quality of the DEM as an input to any 
orthorectification process is also critical. Note that 
SRTM-derived DEMs are often adequate for ~20- to 
30-m resolution SAR processing; however, improve-
ments in backscatter mapping could be achieved 
with better resolution DEMs. This is in some ways 
a question of cost/benefit ratios, as higher resolu-
tion DEMs are available, yet often not open source. 
All datasets shown in this chapter were produced 
with the Gamma Remote Sensing software, which 
is also employed by the Alaska SAR facility for RTC 
production and used by Earth Big Data, LLC, for all 
SAR geocoding. In preparation for the NISAR mis-
sion, the Jet Propulsion Laboratory ( JPL) developed 
the InSAR Scientific Computing Environment (ICSE) 
software which will eventually be available to the 
community. A well-suited open source software for 
post-RTC processing is available in the Geospatial 
Data Abstraction Library (GDAL) packages from 
command line or as Python API bindings.

3.4.2  MULTITEMPORAL SPECKLE NOISE 
REDUCTION

If properly stacked SAR data are available (such 
as in a tiling scheme for manageable data volume 
handling), it is advisable to preprocess time series 
data stacks with a multitemporal speckle filter (e.g., 
by Quegan et al. 2001). Multitemporal speckle fil-
ters have been shown to preserve spatial detail 
while significantly reducing speckle noise at each 
time step. Multitemporal speckle filters estimate 
speckle characteristics along the time domain rath-
er than the spatial domain. The resulting speckle 
statistics can be used to estimate a noise-reduced 
mean backscatter of a pixel, preserving the back-
scatter estimate at any time step, but at reduced 
noise. As such, spatial detail is preserved. 

Figure 3.18 contains an example of L-band 
data from ALOS. Sixteen multitemporal scenes 
were available to reduce speckle noise using multi-
temporal speckle diversity. After filter application, 
various forest growth and logging states are much 

WAVELENGTH POLARIZATION
RESPONSE BY FOREST TYPE

Sparse Forest (dry) Sparse Forest 
(flooded) Degraded Forest (dry) Degraded Forest 

(flooded) Dense Forest (dry) Dense Forest (flooded)

C-band
backscatter
(g0)

VV Medium to high; 
Depending on the 
roughness of the forest 
floor and moisture, 
there is lots of variation 
in this category

Low to medium; 
Depending on forest 
density, lots of forward 
scattering

Medium to high; most 
scattering from crown

Medium to high; most 
scattering from crown

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

VH Medium to high; 
Depending on the 
roughness of the forest 
floor and moisture, 
there is lots of variation 
in this category

Low to medium; 
Depending on forest 
density, lots of forward 
scattering

Medium to high; most 
scattering from crown

Medium to high; most 
scattering from crown

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

VV/VH Ratio Medium to high Medium to high Medium Medium Medium Medium

L-band
backscatter
(g0)

HH Low to medium; lower 
than dense forest and 
flooded sparse forest. 
At steep incidence 
angles, backscatter can 
be medium to high

Medium to high, 
depending on how 
much double bounce 
is contributing to the 
signal

Medium to high High to very high, 
double bounce 
contributes to high 
backscatter

High to very high; 
higher than degraded 
forest, however at very 
high biomass levels 
we see saturation and 
no distinction with 
degraded forests

High to very high, 
double bounce 
contributes to high 
backscatter

HV Low to very low, 
depending on how dry 
the soils are

Low to very low. Most 
scattering is in the 
forward direction due 
to specular reflection

Medium to high Medium to high, no 
seasonal variation with 
flooded forest floor

High to very high; 
volume scattering 
is dominant – best 
senstivity to biomass 

Medium to high, no 
seasonal variation with 
flooded forest floor

HH/HV Ratio Medium High Medium High Medium High

Table 3.3 Expected backscatter characteristics for different vegetation transition scenarios. Note: Cross-polarized backscatter is generally lower than like 
polarized backscatter; backscatter values range from very low, low, medium, high, to very high.

more discernible than before filter application. 
Given the color theory in Section 3.2.2 and an 
understanding of volume backscatter changes in 
L-band HV for forests, the multitemporal image can 
be readily interpreted as to what areas underwent 
clearcutting or selective logging (red and yellow 
colors) and what areas are in regrowth (blue col-
ors) or unchanged stage (white and black colors). 
Note that perfect alignment of pixels over the tem-
poral domain is a prerequisite of successful multi-
temporal speckle filtering. Thus, it is advisable to 
apply the filter on data of the same repeat path.

3.4.3.  A WORD ON POWER, AMPLITUDE, 
AND DB SCALES 

With SAR data handling, it is important perform 
all spatial and temporal averaging operations in 
power scale. SAR data expressed in dB (logarithmic 
transformation) or amplitude scale (square root 
transformation) introduce mathematical errors 
when using these averaging or spatial convolution 

http://gdal.org/
http://gdal.org/
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AFTER FILTER APPLICATION:BEFORE FILTER APPLICATION:

L-HV RGB: 2007-07-03 2009-07-08 2010-07-11

Figure 3.18 Multitemporal speckle filter application on a perfectly co-registered time series data stack of 
ALOS L-band data over Louisiana, U.S

operations. This is also true for warping operations 
when convolutions on the SAR data are performed. 
Therefore, it is recommended that data be convert-
ed to the power domain during processing, such 
as the Earth Big Data’s (EBD’s) processing software 
for multitemporal filtering. The QGIS plugin of 
EBD’s open source SAR time series visualization 
tool also uses power transformations behind the 
scenes when displaying time series in dB scale. 

3.4.4  TILING AND CONSTRUCTION OF 
TIME SERIES FROM GEOTIFFS WITH 
VIRTUAL RASTER TABLES

With the advent of SAR sensors with global 
acquisitions at high temporal frequency, the era 
of time series analysis for SAR data has begun. 
Sentinel-1, with its two-sensor formation flights, 
now monitors most of the planet at 12-day repeat 
cycles, denser at higher latitudes. With swath 
width in high-resolution Interferometric Wide 
Swath mode at ~250 km, SAR data volumes be-
come massive quite quickly. Thus, it is imperative 
that appropriate tiling schemes and data handling 
strategies are employed. For many reasons, the 
GeoTIFF image format has evolved as a standard 
for handling remote sensing imagery. In concert 
with the Virtual Raster Table (VRT) format from the 
GDAL library, GeoTIFFs can be very efficiently tied 
together into time series that can readily be subset 
or rearranged without the need for large raster 
data operations. VRTs are just XML-based headers 
that form the metadata for building image band 
stacks. But even more so, many raster operations 
can be prescribed as VRT processing in multiple 
steps, only to be executed on the data when the 
raster output is generated. 

A tiling approach was developed for Sentinel-2 
optical data at 20-m resolution based on the Mili-
tary Grid Reference System (MGRS). This globally 
consistent Universal Transverse Mercator (UTM) 
projection-based approach keeps data consistent 
in spatial extent and projection across the globe. 
The pixel area of an MGRS UTM tile at the equator 
is the same as in a tile at higher latitudes. Argu-
ably, this approach keeps data globally minimally 
distorted, and algorithms for spatial convolutions 

like speckle filters would work consistently on UTM 
data. This is not true for data in latitude/longi-
tude spacing, where longitudinal pixel resolution 
changes with latitude. Using the Sentinel-2 MGRS 
tiling scheme also for Sentinel-1 data enables 
readily optical/SAR fusion without the need for 
further reprocessing. Hence, the EBD production 
suite readily provides Sentinel-1 SAR time series 
data stacks in MGRS tiling format. 

A data guide explaining the naming conventions 
and tiling of VRT/GeoTIFF time series data stacks 
used by EBD products can be found here. GDAL 
can be used directly to build VRT stacks solely 
based in open source components.

3.5  Change Detection 
Approaches for SAR Data
3.5.1  BITEMPORAL METHODS

Classic image change detection methods for 
bitemporal image comparison can be applied 
to well-calibrated RTC SAR imagery. The log-ra-
tio method was explained in Chapter 2. The 
Iteratively reweighted Multivariate Alteration De-
tection (iMAD) algorithm (Nielsen 2007) holds 
promise for change detection between two im-
ages; however, as shown in previous sections, 
it is important to understand possible impacts 
on backscatter change that are not linked to 
real changes such as deforestation. While for-
est changes are easier to detect in bitemporal 

analyses at L-band, C-band data often present 
a challenge, as surface roughness and moisture 
components can lead to significant SAR signal 
ambiguities. 

3.5.2  TIME SERIES ANALYSIS METHODS

In the past, the availability of SAR data was 
sparse in space and time; however, the Sen-
tinel-1 mission has been a game changer in 
moving SAR into operational use. The upcoming 
NISAR mission—with its open data policy and 
L-band data at 12-day repeat intervals at medi-
um resolution—will be the next big push for SAR 
data availability. With near-continuous availabil-
ity of SAR observations of the ground, real time 
forest monitoring can thus be achieved. Time 
series analysis techniques developed for optical 
imagery are somewhat applicable, although SAR 
characteristics of backscatter sensitivity to struc-
ture and moisture warrant a closer look at new 
methods. Change point detection with cumula-
tive sums (Manogaran & Lopez 2018) is an estab-
lished time series analysis technique stemming 
from the financial sector. With the general SAR 
backscatter trending to decrease with biomass 
loss due to deforestation or forest degradation, 
the application of cumulative sum analysis to 
SAR time series data seems potentially simple, 
yet powerful. 

The following figures show time series signals 
over a deforestation event in Ecuador observed 

https://github.com/EarthBigData/openSAR/tree/master/code/QGIS/plugins
https://github.com/EarthBigData/openSAR/tree/master/code/QGIS/plugins
https://www.gdal.org/gdal_vrttut.html
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml/ec05e22c-a2bc-4a13-9e84-02d5257b09a8
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml/ec05e22c-a2bc-4a13-9e84-02d5257b09a8
https://github.com/EarthBigData/openSAR/blob/master/documentation/EBD_DataGuide.md
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with Sentinel-1 data from 2016 to 2018 that ex-
emplify the strength of SAR time series for forest 
change detection. Figure 3.19 shows a 4-x-4-km2 
subset of an active logging region in the northeast-
ern part of Ecuador, and Figure 3.20 shows the 
time series profile and associated imagery for a 
logging event in January 2017. While some noise 
exists in the time series, a clear backscatter de-
crease in early 2017 is visible in the center image 
and time series plot. As is typical for deforested 
areas at C-band, lower backscatter at higher vari-
ability is observed in the C-band profile after the 
deforestation event. This disturbance observation 
can be identified from the longer trends visible 
compared to more short-term random noise due 
to moisture variations. After applying a kernel 
filter to smooth the time series somewhat, a cu-
mulative sum curve can be constructed from the 
residuals of the time series data, minus the mean 
observation of the entire time series. 

Figure 3.21(a) shows the smoothed time se-
ries profile and the mean of the time series used 
to calculate the residuals. The cumulative sum of 
the residuals is shown as the peaking blue curve 
in the bottom panel. A way to establish the valid-
ity and significance of a candidate change point is 
to perform a bootstrap analysis in which the time 
steps are randomly reordered and cumulative 
sums of the randomized residuals are computed. 
If the randomization (n > 500) shows few or no 

Figure 3.19 Ecuador logging test site

Figure 3.20 Time series profile of red square with associated Sentinel-1 descending VV data.

curves reaching the same maximum value of the 
peak of the cumulative sum curve (which is the 
change point in time) the point can be labeled val-
id. The bootstrapping thus provides a confidence 
level for a detected change point. Other metrics 

can aid in the confirmation of change points in a 
SAR time series, as elaborated with formulas and 
Python code in the training Jupyter Notebooks that 
go along with this chapter. As can be seen in Fig-
ure 3.21(b), the 500-fold randomization shows 
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Figure 3.22 Sentinel-1 time series profiles of forest and non-forest land cover patches. Red profiles are C-VV, 
and blue profiles are C-VH backscatter curves. The backscatter range in each subset shows backscatter 
from 0 to –20 dB for the SAR g0 values. The timeframe covers dates from April 2015 to April 2017.

Sentinel-1
Time Series

Multi-temporal composite
R 2016-02-02 Dry
G 2016-04-07 Medium
B 2016-08-29 Wet

Burkina Faso
N11 w002 (lower left)

1x1 degree tile

Urban

Dense Forest

Open Forest

Mud Flat

Agriculture

Open Savannah

Figure 3.23  Logging progression detected from 
Sentinel-1 satellites. A 20-m pixel spacing the subset 
covers 300 x 320 m2. The logged area is 5 ha. 

that all randomized S-curves are significantly low-
er in their peak values compared to the candidate 
change point in the observed time series. 

Applying this approach to all pixels in the sub-
set results in the identification of change pixels 
and the detected dates of change shown in Fig-
ure 3.22 (right panel). The color codes corre-
spond to the change dates, at a time resolution of 
about 12 days. The left panel in this figure shows 
a multitemporal color composite of Sentinel-1 de-
scending VV acquisitions from 2016-11-15 (red), 
2017-08-29 (green), and 2018-05-21 (blue). Note 
that many of the red and yellow color tones in 
this multitemporal composite correspond to the 
expected and detected deforestation and forest 
degradation events. However, some red tones 
also are more associated with changes in agricul-
tural patterns, which were correctly not mapped 
as forest degradation events, as their time series 
profiles did not match the type of curves seen in 
the previous profiles. 

Lastly, to confirm the capability of Sentinel-1 
SAR time series to map logging progression, a 
close-up of the earliest detected event in this re-
gion is shown in Figure 3.23. Change dates show 
the progression of the logging of a 5-ha area over 
the course of four months starting in the southeast 
corner of the patch and progressing to the west. 

Figure 3.21 (a) Smoothed time series and mean backscatter, and (b) 500 cumulative sums of the 
residuals of the time series, minus the mean and 500-fold bootstrapped cumulative sum curves.

A.)

B.)
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3.5.3  SUMMARY ON TIME SERIES SIGNAL 
ANALYSIS FOR SAR BACKSCATTER DATA

In summary, SAR time series data, such as those 
now available from Sentinel-1, are an invaluable 
resource for detailed forest change mapping with 
quasi-continuous mapping capacity from the sen-
sors. Note that several regions of the planet might 
be covered more often with ascending or descend-
ing data, single-polarization VV or dual-polarization 
VV+VH datasets. The upcoming NISAR mission will 
bring the same datasets and temporal frequency at 
L-band, which will increase forest change detection 
capability, as fewer signal ambiguities in the time 
series exist with clear drops in backscatter from 
deforestation and forest degradation activities. 

An example of a semi-arid region and time se-
ries signal variation at C-band is provided for Burki-
na Faso. Figure 3.22 exemplifies the moisture 
and structure dependency of various dense for-
ests. Note in this figure how backscatter varies by 
season due to an increase in moisture and agricul-
tural activity. Even a strong rain event seems to be 
detected in April 2016, leading to a spike in almost 
all curves but urban and the mud flat. The mud flat 
profile shows a strong drop at one date (which is 
most likely associated with a flash flood event from 
the heavy rain event), leading to open water sur-
face detection in the time series. Also note that the 
amplitude in the time series signal increases with 
decreasing canopy cover, which can be attributed 
to an increase in soil moisture signal contribution 
during the rainy season. It can be seen that with 
decreasing density, the seasonal moisture changes 
contribute to the rise and fall of backscatter. Thus, 
it is again important to keep in mind that backscat-
ter signals vary over time, which is vital for careful 
selection of seasons for time series analysis. A com-
pilation by Ulaby et al. (2014) entitled Microwave 
Radar and Radiometric Remote Sensing contains in-
depth resources for SAR data backscatter behavior 
from soil and vegetation targets.

3.5.4 OPTICAL/SAR FUSION FOR FOREST 
MAPPING

SAR and optical data provide complementary 
information for forest monitoring, as different im-

aging principles underlie the SAR backscatter and 
optical multispectral reflectance measurements. 
As previously noted, SAR measures changes in 
vegetation and soil moisture content as well as 
the structural composition of the vegetation (life-
forms). Optical remote sensing measures changes 
in the chemical composition of leaves and their 
reflectance when illuminated by sunlight, also in-
cluding measurements of shadow fractions within 
canopies. Indices like the Normalized Difference 
Vegetation Index (NDVI) (Tucker 1979) normalize 
optical reflectance values and provide a measure of 
the vegetation density or leafiness. Thus, studies of 
SAR backscatter and NDVI can be used to compare 
time series of optical and SAR data. Several studies 
have exploited these similarities, fusing SAR data 
from Sentinel-1 and ALOS and Landsat time series 
(Reiche et al. 2016). Various approaches for fusing 
time series data can be applied. Attempts have 
been made to fuse time series at the signal level, 
where optical and SAR signals are normalized to 
simulate similar trends in a fused time series (e.g., 
filling NDVI gaps with simulated SAR backscatter 
assuming similar behaviors). This is problematic, 
however, given that the signals have different un-
derlying principles, although some successes have 
been demonstrated (Reiche et al. 2015).

Another approach is fusion at the prediction lev-
el, that is, optical and SAR time series are analyzed 
separately, and probabilities for deforestation and 
forest degradation events are computed and com-
pared in the time domain. This has an advantage 
in that inherent sensor characteristics are optimally 
analyzed, and probabilities as dimensionless mea-
sures can readily be fused in a time series. As such, 
SAR can fill time gaps in optical observations, and 
joint probabilities can confirm detections from sep-
arate optical or SAR analyses. Holden et al. (forth-
coming) developed and tested two approaches 
for fusing time series of Landsat reflectance and 
L-band backscatter time series for mapping defor-
estation for a site with both small- and large-scale 
agroforestry near Yurimaguas, Peru. This “Proba-
bility Fusion” approach—similar to the approach-
es used by Reiche et al. (2015, 2018)—performed 
slightly better for finding deforestation with radar 

data in terms of map accuracy (78.9% vs. 75.6%) 
and change detection timing, even with a relative 
abundance of Landsat data and only 11 radar ob-
servations. The improvement when using radar 
data was much higher when simulating reduc-
tions to Landsat data availability. Their “Residual 
Fusion” algorithm relies on time series regression 
forecasts (similar to BFAST Monitor (Verbesselt et 
al. 2010) or CCDC (Zhu et al. 2012)) and was less 
accurate when fusing data sources than when us-
ing Landsat alone, likely because there were too 
few radar observations to reliably develop forecast 
regression models. The authors encourage further 
development of time series fusion algorithms that 
can incorporate data from current and upcoming 
radar missions, especially approaches that can go 
beyond just deforestation mapping to provide class 
transition labels for IPCC reporting. 

3.6  Conclusions
With the launch of Sentinel-1 and its associat-

ed open data distribution, monitoring forest re-
sources at medium resolution with SAR has now 
reached operational levels. The C-band mission 
of the Sentinel-1 sensors are already projected to 
2030 in ESA’s budget. NASA and ISRO are poised 
to launch the L-band NISAR missions at the begin-
ning of the next decade, which will provide 12-day 
repeat global L-band and regional S-band acquisi-
tions, also with an open data policy. As shown in 
this chapter, SAR data have a strong sensitivity to 
forest change. Careful preprocessing is required to 
build good time series data stacks. Seasonal and 
moisture variations need to be separated from 
structural changes in change detection approach-
es. This requires potentially filtering of the time 
series to remove “outliers.” Cumulative sum-based 
change detection of SAR backscatter mean shifts 
are amongst efficient change detection techniques 
of the continuously available time series signals.
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