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ABSTRACT: Cloud-top phase (CTP) impacts cloud albedo and pathways for ice particle nucleation, growth, and fallout
within extratropical cyclones. This study uses airborne lidar, radar, and Rapid Refresh analysis data to characterize CTP
within extratropical cyclones as a function of cloud-top temperature (CTT). During the 2020, 2022, and 2023 Investigation
of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) field campaign deployments,
the Earth Resources 2 (ER-2) aircraft flew 26 research flights over the northeast and midwest United States to sample the
cloud tops of a variety of extratropical cyclones. A training dataset was developed to create probabilistic phase classifica-
tions based on Cloud Physics Lidar measurements of known ice and liquid clouds. These classifications were then used to
quantify dominant CTP in the top 150 m of clouds sampled by the Cloud Physics Lidar in storms during IMPACTS. Case
studies are presented illustrating examples of supercooled liquid water at cloud top at different CTT ranges (238 , CTTs ,
2358C) within extratropical cyclones. During IMPACTS, 19.2% of clouds had supercooled liquid water present at cloud top.
Supercooled liquid was the dominant phase in extratropical cyclone cloud tops when CTTs were .2208C. Liquid-bearing
cloud tops were found at CTTs as cold as2378C.

SIGNIFICANCE STATEMENT: Identifying supercooled liquid cloud tops’ frequency is crucial for understanding
ice nucleation mechanisms at cloud top, cloud radiative effects, and aircraft icing. In this study, airborne lidar, radar,
and model temperature data from 26 research flights during the NASA IMPACTS campaign are used to characterize
extratropical cyclone cloud-top phase (CTP) as a function of cloud-top temperature (CTT). The results show that liquid
was the dominant CTP present in extratropical cyclone cloud tops when CTTs were .2208C with decreasing super-
cooled liquid cloud-top frequency at temperatures, 2208C. Nevertheless, liquid was present at CTTs as cold as2378C.

KEYWORDS: Extratropical cyclones; Cloud water/phase; Lidars/Lidar observations

1. Introduction

Cloud-top phase (CTP) characterization is a critical aspect of
understanding cloud albedo, as well as ice particle nucleation
mechanisms, growth, and fallout within extratropical cyclones.
Accurate measurement and characterization of supercooled liq-
uid water (SLW) at cloud top is essential to understanding ice

formation at cloud top through various heterogeneous ice nu-
cleation pathways such as deposition, immersion freezing, and
contact nucleation (e.g., Kanji et al. 2017; Ansmann et al. 2009;
Westbrook and Illingworth 2011; de Boer et al. 2011; Field et al.
2001). Moreover, SLW indicates significant ice supersaturations
across a wide temperature range at cloud top, enabling rapid dif-
fusional growth and fallout of ice crystals if they were to form
(e.g., Westbrook and Heymsfield 2011).

The dynamics of cloud-top environments within extratropi-
cal cyclones are influenced by gradients in wind shear and wa-
ter vapor at cloud top. Gradients in wind shear and water
vapor have the potential to destabilize the cloud-top region
and induce localized vertical circulations that generate SLW.
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Vertical circulations ensure that the condensate supply rate
exceeds the diffusional growth rate of ice, thereby facilitating
the formation of SLW at cloud top (Rauber and Tokay 1991).
Convective cloud-top generating cells, for example, often de-
velop in the presence of cloud-top potential instability driven
by entrainment and cloud-top radiative cooling, and are subse-
quently organized by shear (Keeler et al. 2016a,b, 2017). Gener-
ating cells are highly turbulent in nature and are characterized by
updrafts of 0.75–3.00 m s21 in the upper 1–2 km of otherwise
stratiform cloud (Wexler 1955; Douglas et al. 1957; Wexler and
Atlas 1959; Carbone and Bohne 1975; Rosenow et al. 2014;
Kumjian et al. 2014; Henneberger et al. 2023). Qualitative
and quantitative studies have reported the presence of SLW
within cloud-top generating cells in various cloud systems
(e.g., McFarquhar et al. 2011; Plummer et al. 2014; Wang et al.
2020; Zaremba et al. 2020). Plummer et al. (2014) analyzed data
from the Profiling of Winter Storms field campaign and found
SLW within 26% of generating cells observed in situ, occurring
between temperatures of 231.48 and 211.18C, with SLW being
nearly ubiquitous at cloud top at temperatures. 2168C.

Radiative cooling also plays a vital role in destabilizing
cloud tops, particularly at night when longwave cooling rates
are much larger without the heating caused by solar radiation.
The longwave cooling process predominantly takes place at
the cloud top and contributes to the creation and sustainment
of cloud-top generating cells, ensuring a steady supply of
SLW. Keeler et al. (2017) simulated extratropical cyclone
cloud cover and revealed that the average longwave cooling
rates across the domain exceeded 0.60 K h21, with certain
individual generating cells exhibiting cooling rates exceeding
3.00 K h21 during a nighttime simulation using a high-resolution
mesoscale model. These cooling rates maintained instability
at the cloud top, providing a sustained source of instability for
generating cells to form with varying vertical velocities.

Despite its importance, relatively few studies have investi-
gated CTP in extratropical cyclones using remote sensing
data. Naud et al. (2006) used composites of clouds and envi-
ronmental properties centered on storm pressure minimums
to understand how Terra and Aqua Moderate Resolution Im-
aging Spectroradiometer (MODIS) cloud-top properties vary
about extratropical cyclone pressure centers. They found a re-
lationship between ice phase fraction and cloud-top tempera-
ture (CTT) obtained from two winters of MODIS retrievals
over the North Atlantic and North Pacific. Higher glaciation
rates typically occurred at higher cloud-top temperatures
south and east of pressure minimums for each storm. Naud
and Kahn (2015) used Atmospheric Infrared Sounder (AIRS)
data to analyze CTP in Northern Hemisphere extratropical cy-
clones between December and February of 2006–10. They
found that warm-frontal clouds are typically dominated by ice,
while liquid-phase clouds often occur outside of the warm-frontal
region. Supercooled or mixed-phase clouds were typically found
in the southwestern quadrant of extratropical cyclones where ele-
vated convection was most likely. Despite these studies showing
potential relationships between storm thermodynamic environ-
ments at cloud top and CTP, few studies have examined and
quantified CTP as a function of CTT within northeast and mid-
west U.S. extratropical cyclones.

Increasing interest in the dynamics and thermodynamics of
cloud-top environments, CTP, and elevated convective sub-
structures, the lack of remote sensing observations to charac-
terize cloud-top regions, and societal impacts of recent winter
storms motivated the National Aeronautics and Space Ad-
ministration (NASA) Investigation of Microphysics and Pre-
cipitation for Atlantic Coast-Threatening Snowstorms field
campaign (IMPACTS; McMurdie et al. 2022). The objective
of this study is to quantify, using IMPACTS airborne lidar,
W-band radar, and model reanalysis data, the fraction of sampled
cloud tops observed over extratropical cyclone cloud systems
that are dominated by SLW at cloud top as a function of CTT. A
lidar phase identification scheme is developed and is used to dif-
ferentiate between liquid or ice dominated cloud top.

The remaining sections of this paper are organized as follows:
Section 2 provides details on the flight strategy employed during
the IMPACTS campaign and describes the different types of
storms sampled. Section 3 describes the data used in the analysis.
Section 4 outlines the lidar phase classification algorithm, the
methodology used to estimate CTTs, and compares the results
obtained using the lidar phase algorithm with those from the
default NASA Cloud Physics Lidar (CPL) phase algorithm.
The identification of cloud top, case studies that exemplify the
presence of SLW at different CTT ranges within extratropical
cyclones (2358 , CTT , 38C), and the quantification of CTP
is presented in section 5. Key findings of this study in relation
to previous studies are discussed in section 6. Conclusions are
summarized in section 7.

2. Sampling strategy

The IMPACTS field campaign was designed to investigate
the microphysical and remote sensing properties of mesoscale
snowbands in extratropical cyclones because of their signifi-
cant impact on snowfall totals over the northeast and midwest
United States. During the campaign there were two research
aircraft: the NASA Earth Resources 2 (ER-2) which flew at
high altitudes (;20 km) sampling clouds with four different
radar wavelengths as well as the CPL. The NASA P-3 Orion
flew in-cloud taking in situ microphysics measurements gener-
ally well below cloud top. Both aircraft primarily flew repeated
flight legs orthogonal to mesoscale snowbands observed using
ground-based radars, sampling the environment and micro-
physical characteristics within and outside of the bands. This
study focuses on remote sensing data from the ER-2, specifi-
cally the CPL and the W-band Cloud Radar System (CRS).
The CRS was chosen because of its higher sensitivity and
greater ability to detect nonprecipitating cloud particles relative
to other radars deployed on the ER-2.

Three IMPACTS deployments occurred during January and
February 2020, 2022, and 2023. During that time the ER-2
sampled 26 winter storms over the midwest and northeast
United States. Extratropical cyclones sampled were classified
based on their low pressure tracks across/near the continental
United States. Figure 1 shows representative storm types
sampled using GOES-16 10.35 mm brightness temperature
and all ER-2 flight tracks flown to sample similar events. Table 1
summarizes storm category, research flight leg start/end times,
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number of flight legs flown on a given research flight, and the
cumulative distance traveled along the research flight legs by
the ER-2 (excluding the ferry legs). The category was decided
based on the region of cyclogenesis, how the low pressure center
evolved with time, and if there was secondary cyclogenesis along
the East Coast before being sampled by IMPACTS.

Cyclones moving northeastward along the U.S. East Coast
and intensifying were classified as Miller type-A, Miller type-B,
or Great Plains cyclones, depending on their point of origin. Six
Great Plains cyclones were sampled by the ER-2 during the

three deployments. These lows typically formed over the upper
Midwest and Great Plains before moving northeast along/near
the Canadian border and exhibited no redevelopment along the
East Coast. Four flights sampled the clouds in these cyclones
over the northeast United States, one over Illinois, and one
over the upper Great Plains (Fig. 1a). These were typically
deeper cloud systems (cloud depth . 8 km), with rain to the
south and snow to the north. Six Arctic cold fronts were sam-
pled where the ER-2 flew consecutive flight legs across the
fronts. These fronts had no strong low pressure center, but

a) 2110 UTC 25 Jan 2023 | Great Plains Cyclone

c) 1620 UTC 12 Feb 2023 | Gulf Coast Cyclone d) 1620 UTC 19 Jan 2022 | Alberta Clipper

b) 1130 UTC 3 Feb 2022 | Cold Front

e) 1510 UTC 7 Feb 2020 | Miller Type A f) 1130 UTC 25 Feb 2022 | Miller Type B

25 Jan 2023

25 Feb 2020
13 Jan 2023
19 Jan 2023

14 Feb 2023
17 Feb 2023

12 Feb 2023
19 Jan 2022
19 Feb 2022
5 Feb 2023

13 Feb 2022

5 Feb 2020
3 Feb 2022
4 Feb 2022

17 Feb 2022
29 Jan 2023

8 Feb 2022

1 Feb 2020
7 Feb 2020
29 Jan 2022

15 Jan 2023
23 Jan 2023

28 Feb 2023

25 Jan 2020
27 Feb 2020
25 Feb 2022

FIG. 1. The 10.35 mm GOES-16 brightness temperature for representative extratropical cyclones observed over the northeast and midwest
United States. Representative storm systems included (a) Great Plains cyclone, (b) cold front, (c) low originating over the Gulf Coast, (d) Al-
berta clipper, (e) Miller type-A cyclone, and (f) Miller type-B cyclone. Black flight tracks correspond to the representative storm’s satellite image
shown. Yellow flight tracks correspond to flights that sampled similar storms of the same category over the northeast and midwest United States.
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rather a series of weak low pressure systems that propagated
along the strong temperature gradient. The temperature gra-
dient typically formed and was reinforced by a strong Cana-
dian high pressure system bringing anomalously cold air
southward. Widespread precipitation, both rain and snow,
was typically found on the cold side of the front (Fig. 1b).
One Gulf Coast low was sampled by the ER-2 that formed
off the northwest coast of Florida, traversed over the south-
east United States, and then up the East Coast with no rede-
velopment (Fig. 1c). Three Alberta clippers were sampled by
the ER-2 over southeastern Canada during the three deploy-
ments. These were typically associated with weaker low pres-
sure systems originating over western Canada and traversing
the U.S.–Canadian border (Fig. 1d). Six Miller type-A and
five Miller type-B storms (Miller 1946) were also sampled by
the ER-2 during IMPACTS. Miller type-A cyclones develop
along a cold front located along the East Coast of the United
States. Miller type-B cyclones develop along the East
Coast of the United States but to the southeast of an older

cyclone on the western side of the Appalachian Mountains
(Figs. 1e,f).

The flight paths of the ER-2 were composited with respect
to the tracked paths of the centers of observed cyclones. Each
cyclone’s pressure minimum was found using fifth-generation
European Centre for Medium-Range Weather Forecasts
reanalysis (ERA5; Hersbach et al. 2020) mean sea level pres-
sure. This minimum was tracked over time, with positions in-
terpolated between reanalysis output. The proximity of the
ER-2’s flight paths to the cyclone’s surface low pressure cen-
ter was estimated every second (Fig. 2). Typically, the ER-2
was sampling within the northwest quadrant of IMPACTS
storms. This compositing procedure could not be applied for
flights across extensive Arctic cold fronts. Figure 3 shows an
example of an Arctic cold front sampled on 3 February 2022
by the ER-2 with strong high pressure system bringing anom-
alously cold air southward. During Arctic-frontal events, the
ER-2 predominantly sampled cloud cover 10–400 km behind
the surface front.

TABLE 1. Flight leg start and end times, number of flight legs flown, and total distance traveled along the legs by the ER-2.

Deployment
Flight leg
start time

Flight leg
end time

Number of
flight legs

Cumulative flight
leg length (km)

Great Plains cyclones
2020 2145 UTC 25 Feb 0142 UTC 26 Feb 11 2146
2023 0550 UTC 13 Jan 0909 UTC 13 Jan 7 1692
2023 2140 UTC 19 Jan 0147 UTC 19 Jan 8 1622
2023 1902 UTC 25 Jan 2326 UTC 25 Jan 9 1986
2023 0018 UTC 15 Feb 0246 UTC 15 Feb 6 1025
2023 1448 UTC 17 Feb 1645 UTC 17 Feb 6 922

Cold fronts
2020 1355 UTC 5 Feb 0001 UTC 6 Feb 7 1554
2022 1443 UTC 3 Feb 1604 UTC 3 Feb 2 433
2022 1444 UTC 4 Feb 1911 UTC 4 Feb 6 2028
2022 1212 UTC 13 Feb 1523 UTC 13 Feb 6 1310
2022 1736 UTC 17 Feb 2233 UTC 17 Feb 11 2137
2023 1455 UTC 29 Jan 1640 UTC 29 Jan 4 746

Gulf Coast cyclone
2023 1440 UTC 12 Feb 1918 UTC 12 Feb 9 1887

Alberta clippers
2022 1231 UTC 19 Jan 1628 UTC 19 Jan 11 1265
2022 1258 UTC 19 Feb 1556 UTC 19 Feb 6 1073
2023 1516 UTC 5 Feb 1811 UTC 5 Feb 6 1435

Miller type-A cyclones
2020 1222 UTC 1 Feb 1408 UTC 1 Feb 5 795
2020 2145 UTC 7 Feb 1613 UTC 7 Feb 6 1238
2022 0035 UTC 30 Jan 0156 UTC 30 Jan 7 487
2022 1253 UTC 8 Feb 1814 UTC 8 Feb 7 2166
2023 1500 UTC 15 Jan 1811 UTC 15 Jan 7 1200
2023 1425 UTC 23 Jan 1709 UTC 23 Jan 8 1091

Miller type-B cyclones
2020 2000 UTC 25 Jan 2300 UTC 25 Jan 11 1604
2020 0915 UTC 27 Feb 1304 UTC 27 Feb 9 2324
2022 0923 UTC 25 Feb 1325 UTC 25 Feb 10 1696
2023 1102 UTC 28 Feb 1403 UTC 28 Feb 6 1235
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3. Data

a. CPL

The CPL (McGill et al. 2002) is a backscatter lidar designed
to operate simultaneously at two visible and one infrared
wavelength (355, 532, and 1064 nm) and provide multiwave-
length lidar measurements at high spatial and temporal reso-
lution. The CPL has a vertical resolution of 30 m and a
horizontal resolution that varied due to the speed of the ER-2
but during IMPACTS was typically 200 m. The CPL was
nominally pointed at 28 toward the nose of the ER-2 which
typically had a pitch of 18 for a total 38 offset allowing CPL re-
turns to avoid specular reflection from horizontally oriented
ice crystals. For a cloud located 10 km from the CPL, the re-
ceiver footprint is only ;1 m (Yorks et al. 2011a). The CPL
provided observations of the backscatter coefficient (b) and
depolarization ratio (d), which are used herein at 1064 nm to
determine CTP. The CPL measures the total backscatter (b)
signal (particle plus molecular) and cross-polarized backscat-
ter signal to estimate d of the return signal from cloud and
aerosol particles. The quantity b is a measure of how strongly
the volume sampled scatters light back to the lidar at a 1808
scattering angle. The quantity d measures the degree to which
particles in a scattering volume modify the polarization state
of incident light, which is related to the sphericity of the

particles in the scattering volume (Noel et al. 2004; Yorks et al.
2011b). In this paper, these two lidar parameters (b and d)
are used to discriminate between liquid and ice. Figures 4a–c
are a sample of the radar and lidar data observed on 7 Febru-
ary 2020, including an example of b and d in Figs. 4d and 4e.

The CPL level 2 data products consisted of vertical atmo-
spheric profiles with an along-track horizontal resolution of
800 m to 1.2 km, depending on the aircraft ground speed.
Each profile contained vertical bins with 30 m vertical resolu-
tion, hereafter referred to as elements. When the ER-2 was
flying at approximately 20 km, a vertical column contained
;667 elements. This study is limited to phase retrievals at
cloud top because optically thick cloud cover fully attenuated
the CPL signal beneath cloud top. The optical depths of liquid
cloud tops are influenced by cloud thickness, water content,
and droplet size, and generally causes lidar signals to attenu-
ate quickly when the optical depth nears 3 (Venema et al.
2000). The CPL signal in some instances during IMPACTS
penetrated several kilometers beneath cloud top. These cases
often were associated with optically thin ice clouds like cirrus.

b. CRS

The CRS is a W-band (94 GHz) radar that flies in nadir
pointing mode on the NASA ER-2 providing observations of
equivalent reflectivity factor, Ze, and Doppler radial velocity,
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FIG. 2. ER-2 flight tracks in low relative coordinates. Distances are shown in kilometers away
from the cyclone’s pressure minimum.
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Vr. This analysis examines the horizontal variability of cloud
substructures and circulations using the CRS fixed nadir beam
and takes advantage of higher resolution Vr measurements
due to its smaller beamwidth, reduced nonuniform beam fill-
ing, and higher sensitivity relative to other radars deployed on
the ER-2 (McLinden et al. 2021a,b). The CRS beamwidth is
0.4688 with a footprint of 0.16 km at the surface when the air-
craft is flying at 20 km altitude. Figures 4a and 4b show Ze

and Vr along a flight track on 7 February 2020.
The CPL has a much smaller wavelength than the CRS, which

makes it comparatively more sensitive to smaller particles pre-
sent at cloud top. Therefore, the CPL often detected cloud well
above radar cloud-top echo (typically 250 m to 2 km above).
Section 4b includes further analysis of radar characteristics, spe-
cifically examining the storm structure along the flight legs in re-
lation to the characterization of CTP.

c. RAP analysis data

CTT was estimated using data obtained from hourly 13-km
Rapid Refresh (RAP; Benjamin et al. 2016) analysis data. The
nearest RAP grid point in time and space was used to estimate
CTT for a given cloud-containing profile. CTT was linearly
interpolated between two model pressure levels nearest in
height to each CPL measured cloud-top height to estimate
CTT. This method was used to estimate CTT for each lidar
profile along every research flight leg during IMPACTS.
The RAP analysis data were used rather than the High

Resolution Rapid Refresh (HRRR) analysis because it was
also available during the 2015 Radar Definition Experiment
(RADEX; Tridon et al. 2019; Houze et al. 2017) field cam-
paign. The RADEX data were used to develop the training
dataset for liquid clouds (see section 4b). Using the RAP
analysis data allowed us to maintain a consistent analysis da-
taset during the building of the liquid and ice training data-
sets, and the subsequent statistical analysis of the IMPACTS
data.

d. UIUC rawinsonde data

During the 2020, 2022, and 2023 field campaigns, the
University of Illinois Urbana–Champaign (UIUC) launched
83 iMet-4 rawinsondes from various locations across the
Northeast, primarily along the flight tracks of the ER-2 and
P-3 aircraft. These rawinsondes were used herein to estab-
lish the accuracy of temperature measurements using the
RAP analysis. The manufacturer-stated accuracy of UIUC
rawinsondes was 60.28C for temperature. To facilitate direct
comparisons between the RAP analysis and observed temper-
atures, the rawinsonde and RAP analysis data were interpo-
lated to 25 m height intervals. Of the 83 rawinsondes, 8 were
terminated before reaching cloud top, and were therefore not
used in this analysis. Temperature measurements from the re-
maining 75 rawinsondes were matched to the RAP analysis
data interpolated to the sonde’s latitude, longitude, altitude,
and time.

H

FIG. 3. Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2016) radar reflectivity overlaid with
RAP analysis mean sea level pressure (contoured) and 10 m wind barbs valid at 1600 UTC
3 Feb 2022. Wind barb convention on all panels: half barb 5 5 m s21 and full barb 5 10 m s21.
The red line was the science flight track flown between 1442 and 1604 UTC 3 Feb 2022.
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FIG. 4. An example from 1540:50 to 1613:18 UTC 7 Feb 2020 showing the processing of the
flight leg to classify CTP. Time is in UTC and height is in kilometers above MSL. (a) CRS Ze,
(b) CRS Vr, (c) CPL 1064 nm depolarization ratio (all data), (d) CPL 1064 nm depolarization
ratio (d) after the NASA cloud mask was applied, (e) CPL 1064 nm backscatter coefficient (b)
after the NASA cloud mask was applied, (f) phase classification for every element along the
flight leg (ice is blue, gray is liquid, and red in uncertain), and (g) CTP classification (top 150 m,
first five bins). Each bin represents 30 m. This corresponds to the first five elements identified as
cloud top in (h). (h) CTP (top 150 m).
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e. Comparison of RAP analysis and UIUC rawinsonde
temperatures

Figures 5a and 5b illustrate the differences between the
RAP analysis and observed temperatures as a function of the
RAP analysis temperature. In the temperature range of 2208
to 2408C, the RAP analysis mean deviation from the ob-
served temperatures varied from 20.658C at 2208C to 0.018C
at 2408C (Fig. 5). The standard deviation of the difference
was approximately 18C for model temperatures between 2208
and2408C, increasing slightly above 18C for temperatures greater
than 2208C due to discrepancies in the elevation of the low-level
frontal inversions in the storms. At temperatures , 2408C, the
standard deviation increased with decreasing temperature to val-
ues of 28C at2508C, and 38C at2648C. The minor discrepancies
between the RAP analysis and the rawinsonde temperature data
between 08 and2408C provide confidence that the RAP analysis
can be used to estimate cloud-top temperatures.

4. Cloud-top phase identification

Yorks et al. (2011b) details the standard algorithm to iden-
tify cloud phase in clouds sampled by the CPL. This algorithm
uses simple threshold values of model-estimated temperature
measurements and the 1064 nm layer-integrated linear depo-
larization ratio. In the standard algorithm, if the lidar-detected
mid-cloud-layer temperature within a profile was ,2208C, the
lidar-detected mid-cloud-layer altitude was.8 km, and the layer
integrated volume depolarization ratio was .0.27, then the
cloud was classified as ice. If the lidar-detected mid-cloud-layer
temperature was .2208C, the lidar-detected mid-cloud-layer
altitude was ,8 km, and the profile integrated depolarization
ratio was,0.16, then the cloud was classified as liquid. Otherwise,
it was classified as uncertain.

SLW has frequently been observed at cloud top at tempera-
tures , 2208C and even at temperatures as cold as 231.48C
in Northern Hemisphere midlatitude cyclones (e.g., Plummer
et al. 2014). The analysis below therefore modifies the standard
CPL cloud phase identification methodology to detect SLW at
colder temperatures by incorporating backscatter coefficient
and depolarization ratio measurements using probabilistic
phase classification based on training datasets of known liquid
and ice populations, rather than using hard threshold values
of temperature and the depolarization ratio.

CTP characterization herein is based on analysis of d and b

in profile elements within 150 m of cloud top. The methodo-
logy resembles the approach of past ground-based and space-
borne lidar analyses that use two-dimensional histograms to
classify cloud phase (e.g., Hu 2007; Hu et al. 2009; Thorsen
et al. 2015; Silber et al. 2018; Zaremba et al. 2020). In these
studies, cloud phase was classified along an entire lidar or
satellite time series dependent upon where data fell on a
two-dimensional d versus b histogram. Several studies set
arbitrary fixed boundaries between different regions of the
two-dimensional histogram to discriminate cloud phase (e.g.,
Shupe 2007; Luke et al. 2010). Zaremba et al. (2020) devel-
oped methodology that could be used to identify CTP prob-
abilistically based on training datasets within and over
Southern Ocean clouds using a comparison of lidar backscat-
ter coefficient and depolarization ratio. A similar methodol-
ogy is used in this study to characterize extratropical cyclone
CTP. This work builds training datasets for known liquid
and ice populations and uses the training datasets to classify
CTP for all lidar-detected cloud tops during IMPACTS.
Figure 6 summarizes the processing steps explained in this
section that are used to develop the phase classification
algorithm.

b)a)

FIG. 5. (a) Discrepancies between RAP analysis temperatures and rawinsonde observations, matched by location
and time, represented by a contoured frequency of RAP temperature bias as a function of RAP analysis temperatures.
The solid black line represents the mean difference between the RAP analysis and rawinsonde temperatures and the
dotted line represents the standard deviation. (b) An enlarged view of (a), showing the mean and standard deviation of
the temperature bias.
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a. Cloud–aerosol discrimination algorithm

A cloud–aerosol discrimination algorithm, based on the
operational algorithms employed for NASA’s Cloud–Aerosol
Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
mission (Liu et al. 2009) and Cloud-Aerosol Transport System
(CATS) lidar instrument (Yorks et al. 2021), was used to sep-
arate cloud from aerosol and clear air. First, if an atmospheric
layer had a layer-integrated attenuated backscatter at 1064 nm
greater than 0.03 sr21 or a color ratio (1064 nm/532 nm back-
scatter coefficient) greater than 1, the layer was classified as high
confidence cloud (CAD5 10). CAD is the cloud–aerosol detec-
tion score that ranges from 210 to 10. A value of 10 indicates
complete confidence that the layer is a cloud while a layer with a
CAD score equal to 210 indicates accurate classification of an
aerosol layer. If the layer did not meet either of these criteria
but had a 1064 nm layer integrated depolarization ratio . 0.27
and midlayer temperature , 2208C it was classified as high

confidence cloud (CAD 5 10). For layers that did not meet
both criteria, a multidimensional probability density function
(PDF) technique based on the CALIPSO algorithm (Liu et al.
2009) was used to assign CAD scores. The PDFs were developed
based on CPL measurements obtained during 11 field cam-
paigns. Multidimensional PDFs included additional attributes
such as layer altitudes and thickness, 532 nm attenuated back-
scatter, 1064 nm depolarization, and attenuated backscatter
color ratio (1064/532 nm). Adding more attributes, or dimensions,
to the PDFs resulted in smaller overlap and better skill in classify-
ing clouds and aerosols (Liu et al. 2004). The cloud aerosol dis-
crimination algorithm PDF analysis provides a score which is an
integer value ranging from 210 to 10 for each atmospheric layer.
The sign of the CAD score identifies a layer as either cloud
(positive) or aerosol (negative) while the magnitude represents
classification confidence. If the CAD score equaled 0, the layer
is equally likely to be a cloud layer or aerosol layer, and was
classified as undetermined. In this study, the first element in a
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FIG. 6. Flowchart summarizing the phase identification algorithm. Processing steps taken by NASA are denoted by
the dashed box. Algorithm sections in the text are noted.
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column with a CAD score . 0, classified as cloud, was deter-
mined as cloud top. Only elements that were classified as cloud
by the NASA CPL cloud–aerosol detection algorithm were in-
cluded in the training datasets and used to classify CTP for the
IMPACTS dataset.

b. Training dataset creation

Figure 7 shows the two-dimensional histogram (d versus b)
for all flight legs during the 2020, 2022, and 2023 IMPACTS
deployments regardless of aerosol presence, cloud presence,
or depth beneath cloud top. Figure 7 includes cloud elements
that could be liquid, ice, or mixed phase, and elements af-
fected by single or multiple scattering. The bin width in Fig. 7
was 0.005 for d and 0.05 m21 sr21 for b. The histogram has
two clusters where specific populations (cloud dominated by
liquid and cloud dominated by ice) are likely concentrated
based on past lidar studies (e.g., Silber et al. 2018; Zaremba
et al. 2020) that examined cloud cover and subsequent phase
at visible wavelengths.

IMPACTS was solely focused on sampling subfreezing cloud
cover associated with extratropical cyclones and did not sample
many cloud tops that were .08C that had pure liquid cloud
tops. To address warmer, liquid clouds, CPL data from 15 flights
during the 2015 RADEX campaign were used to help build
both the ice and liquid training datasets. During RADEX, the
ER-2/CPL sampled above freezing low-level (,3 km) stratocu-
mulus clouds over the Pacific Ocean off the coast of California
and off the coast of Washington. RAP initialization data were
used to estimate CTTs, and clear air sampled by the CPL was
masked using NASA’s cloud–aerosol detection algorithm noted
above (section 3a). A training dataset was developed to separate
cloud water and cloud ice based on lidar and thermodynamic
measurements using the combined datasets for all columns from
the IMPACTS and RADEX research flights using the method-
ology described below:

To isolate elements composed entirely of cloud liquid water
(L), all columns where cloud top was detected and CTTs were
.08C were isolated. CTTs . 08C were composed only of liquid.
The d versus b were recorded from each of the first 10 consecu-
tive elements below the aircraft not masked as clear air. The data
from these 10 elements from each of the columns satisfying the
above criteria together made up the liquid portion of the training
dataset. These data typically had low d and high b (Fig. 8a). The
bin widths for Figs. 8a–c were 0.005 d and b of 0.05 m21 sr21.

To isolate elements composed entirely of cloud ice (I), peri-
ods during the IMPACTS and RADEX field campaign were
isolated where model estimated CTTs were ,2408C, the ho-
mogeneous freezing temperature of ice. The first 10 consecu-
tive elements below the aircraft were assumed to represent
cloud ice and their corresponding d and b were recorded.
These elements made up the ice portion of the training data-
set in Fig. 8b. These data typically had higher d and lower b
than the liquid training dataset (Fig. 8a).

c. Probability and phase classification

The training dataset was then gridded into coarser bins in
order to include more training dataset samples in a given bin

with column (i) increments of 0.025 d and row (j) dimensions
of 0.25 m sr21 b (Figs. 8d–f), with each bin containing L(i, j)

(number of liquid elements in a given gridded bin) and I(i, j)
(number of ice elements in a given gridded bin). Bins with
L(i, j) 1 I(i, j) , 30 were excluded. The fraction of liquid ele-
ments [mL(i, j)] and ice elements [mI(i, j)] were then calculated
in the remaining bins as

mL(i,j) 5
L(i, j)

∑
i
∑
j
L(i, j)

, mI (i, j) 5
I(i, j)

∑
i
∑
j
I(i, j)

:

Then, if (mL(i, j))/(mL(i, j) 1mI(i, j)). 0:95, lidar elements within
that bin were assumed to be dominated by liquid. Similarly, if
(mI(i, j))/(mL(i, j) 1mI(i, j)). 0:95, lidar elements were assumed
to be dominated by ice. The term “dominated by” is used
here to recognize that the classification of an element as liquid
does not imply that there was no ice in the cloud element, or
liquid in a cloud element classified as ice. The classification
represents the dominant phase in that element based on the
lidar measurements at 1064 nm. Bins falling outside the train-
ing dataset with temperatures . 2408C, and bins where the
0.95 threshold was not met were classified as uncertain. If
an element fell outside of the training datasets but had a
temperature , 2408C, it was classified as ice. Figure 9 shows

(β
)

Element Counts

FIG. 7. Two-dimensional histogram showing 1064 nm depolariza-
tion ratio (d) vs 1064 nm backscatter coefficient (b) of all elements
from the 2020, 2022, and 2023 IMPACTS deployments. The bin
width was 0.005 for d and 0.05 m21 sr21 for b.
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phase probability in each (i, j) bin for liquid, ice, and both
training datasets combined. Figure 10 shows the final phase
classification when the 0.95 threshold was used. Figure 4f shows
an example from 7 February 2020 of the resulting phase identifi-
cation after classification for all elements.

d. Yorks et al. (2011b) and Zaremba et al. (2023)
algorithm comparison

This subsection presents a comparison of the NASA default
phase algorithm presented in Yorks et al. (2011b) (Y_2011)
and the phase algorithm presented in this manuscript (Z_2023).
Table 2 and Fig. 11 summarize the comparison; 70.9% (156829)
of the cloud-top elements were classified the same by both
algorithms. Here we focus on the 29.1% (64329) of bins that

were not classified as the same phase by both algorithms, pri-
marily liquid phase clouds detected by the Z_2023 algorithm,
but ice phase by Y_2011. The algorithms primarily disagreed
because of the temperature dependence of Y_2011, resulting
in a distinct pattern: agreement in algorithm classification was
primarily noted at temperatures below 2358C (ice classifica-
tion), while disagreement was more prevalent in the tempera-
ture range of2208 to2358C (liquid classification).

Cloud-top elements where ice was classified using Z_2023
but classified as liquid using Y_2011 were found to have depo-
larization ratios . 0.1 and backscatters that ranged from
1024 to 1021 m21 sr21 (Fig. 11a) outside of the Z_2023 liquid
training dataset. Cloud-top elements where liquid was classi-
fied using Z_2023 but were classified as ice by Y_2011 were
found to have depolarization ratios , 0.1 and backscatter

(β
)

(β
)

Element Counts

a) b) c)

d) e) f)

FIG. 8. Two-dimensional histograms of the training dataset: (a) cloud liquid, (b) cloud ice, and (c) cloud liquid and cloud ice. The bin
width for (a)–(c) was 0.005 d and b of 0.05 m21 sr21. (d)–(f) The training dataset was gridded such that each bin has a d of 0.025 and b of
0.25 m21 sr21. Bins containing less than 30 elements were not used in the training dataset.
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coefficients ranging between 1023 and 1021 m21 sr21 (Fig. 11b)
falling within the Z_2023 liquid training dataset. The Y_2011 al-
gorithm underestimated cloud-top elements classified as liquid
by 50% because of its hard cutoff for CTTs , 2208C. Elements
classified by Z_2023 as uncertain but as liquid by Y_2011 typi-
cally fell just outside the boundary of the liquid training dataset

(having backscatter values . 108 or , 1023 m sr21 and depolari-
zation ratios, 0.1) and elements classified as ice by Y_2011 typ-
ically fell just outside the ice training dataset (having backscatter
, 1022 m sr21 and depolarization ratios . 0.1) (Figs. 11c,d).
The comparison between the Y_2011 and Z_2023 phase algo-
rithms highlight significant discrepancies in the classification
of cloud-top elements, with Y_2011 often classifying elements
differently due to its specific temperature thresholds and de-
polarization ratio cutoffs, leading to underestimation of liquid
elements in extratropical cyclone cloud tops compared to the
current algorithm. The discrepancies presented here can help
improve the CPL algorithms and inform the algorithm de-
velopment efforts for future space-based lidar instruments
that will fly as part of the NASA Earth System Observatory
(ESO) Atmosphere Observing System (AOS) mission.

5. Cloud-top phase characteristics

a. Cloud-top identification and overview statistics

To isolate the cloud-top region in profiles where cloud was
present below the aircraft, the first unmasked bin below the
aircraft and the four bins directly beneath it (representing the

a) b)

(β
)

c)

FIG. 9. Probability calculated using methodology discussed in section 4c for (a) liquid, (b) ice, and (c) both liquid and ice.

(β
)

Liquid
Ice
Uncertain

FIG. 10. Final phase classification based on a probability threshold.

0.95 for cloud liquid and cloud ice. Points falling outside of the training
datasets with temperatures,2408Cwere classified as ice.

TABLE 2. Cloud-top comparison between the Yorks et al.
(2011b) algorithm and the Zaremba et al. (2023) algorithm
presented in this manuscript. The number of elements is in
parenthesis.

Zaremba
et al. (2023)

Yorks et al. (2011b)

Ice Liquid Unknown

Ice (137 813) 98.5% (135 804) 1.3% (1790) 0.2% (219)
Liquid (42 453) 50.7% (21 539) 49.2% (20 878) 0.1% (36)
Unknown (40931) 85.5% (34 997) 14.0% (5748) 0.5% (186)
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top 150 m of cloud) were considered cloud top. The tempera-
ture, estimated from RAP analysis data, and phase of each
cloud-top element was recorded. Figures 4f–h show an example
of the final CTP identification from 7 February 2020.

During IMPACTS, 44 415 profiles were sampled, 95.1% of
which had cloud tops detectable beneath the aircraft associ-
ated with extratropical cyclone cloud cover. Table 3 contains
information about the number of profiles sampled on each

Z_2023 Ice, Y_2011 Liquid

b)

a) c)

d)

Z_2023 Liquid, Y_2011 Ice

Z_2023 Uncertain, Y_2011 Liquid

Z_2023 Uncertain, Y_2011 Ice

FIG. 11. Comparison of the Yorks et al. (2011b) and the Zaremba et al. (2023, this manuscript) CPL cloud phase
algorithms. (a)–(d) Two-dimensional histograms of (a) Z_2023 ice, Y_2011 liquid, (b) Z_2023 liquid, Y_2011 ice,
(c) Z_2023 uncertain, Y_2011 liquid, and (d) Z_2023 uncertain, Y_2011 ice. Two comparisons, Z_2023 ice, Y_2011
uncertain and Z_2023 liquid, Y_2011 uncertain had very limited data and are not shown. Bin widths were 0.005 d and
b of 0.05 m21 sr21.

TABLE 3. Phase of elements beneath cloud top corresponding to Fig. 12a.

Cloud phase

Cloud-top element

1 (0–30 m) 2 (30–60 m) 3 (60–90 m) 4 (90–120 m) 5 (120–150 m) All

Liquid 11.6% 20.1% 21.5% 21.5% 21.2% 19.2%
Ice 50.2% 61.2% 65.1% 66.9% 67.8% 62.3%
Uncertain 38.2% 18.7% 13.3% 11.4% 10.9% 18.5%
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research flight where cloud top was sampled beneath the air-
craft; 97.2% of cloud-containing columns had cloud top with
five consecutive elements (Fig. 12). In some cases, detected
clouds were less than 150 m in depth (based on lidar-derived
measurements), due to complete attenuation of the lidar sig-
nal after cloud-top penetration. Of the cloud-containing col-
umns, 2.8% had lidar detected cloud-top depths less than 150
m. Only 1–4 consecutive bins were present beneath the initial
cloud-top bin in these cases (Fig. 12a). The phase of bins as a
function of depth within the cloud-top region is presented in
Fig. 12b and summarized in Table 3. All columns where cloud
was detected were included in the statistical analysis which
follows. After cloud-top identification, 81.5% of all cloud-top
bins sampled were found to be classified as either dominated
by liquid or dominated by ice with the majority of cloud-top
bins being classified as ice (62.3%) at depths up to 150 m be-
neath cloud top. Of all the cloud-top bins sampled, 18.5%
were classified as uncertain. These bins were unidentifiable
based on the training dataset and probability threshold noted in
the previous section. The first vertical bin classified as cloud top
was more likely to be classified as uncertain (38.2%, Table 3).
These elements typically had lower backscatter than the ice and
liquid training datasets and were likely inhomogeneous pixels
(cloud1 aerosol) along cloud-top boundaries sampled.

b. CTP in different CTT ranges

During the IMPACTS field campaign, supercooled cloud
tops were observed at CTTs ranging from 238 to 2378C. For
example, on 19 January 2022, supercooled cloud tops were
observed associated with cloud-top generating cells that had
temperatures between 2308 and 2358C (Fig. 13a). Generat-
ing cell occurrence was inferred qualitatively by the presence
of conditional instability near cloud top, 1–2 m s21 upward
and downward vertical motions in the radial velocity data,
and regions of locally high reflectivity from which a trail of hy-
drometeors originates extending from cloud top (Figs. 13a,b).
This occurred during the passage of an Alberta clipper system
across northern New York and southern Canada. Cloud tops
identified by the CPL between 1608 and 1612 UTC exhibited
high b values (.21023 m21 sr21) and low d values (,0.1) in-
dicative of liquid present at cloud top (Figs. 13c–e). Weak ver-
tical motions from the CRS (1–2 m s21) were also observed
near the cloud top in a potentially unstable layer (where ue
was decreasing with height), resulting in ice formation and
precipitation from the generating cells with supercooled liquid
cloud tops, evidenced by fall streaks extending from cloud top
(Fig. 13a). Between 1602 and 1607 UTC vertical motions
were weaker (;0 m s21) near the cloud top; the cloud top
was glaciated and predominantly composed of ice. This was a
notable instance of SLW forming at lower CTTs (,2308C)
during IMPACTS.

On 27 February 2020, a low pressure system moved into the
eastern Great Lakes region, while a secondary cyclone devel-
oped over New England, resulting in a Miller type-B storm.
The storm was accompanied by cloud-top generating cells
that formed in a potentially unstable layer where ue was de-
creasing with height and the cloud-top region exhibited vertical

motions of 1–2 m s21 (Figs. 14a,b). Cloud tops varied along
the flight leg between 3 and 6 km, with cloud-top generating
cells having temperatures between 2218 and 2308C. Clouds
farther west (1259–1300) experienced little to no vertical
motions at the cloud top and were glaciated with b values of
1022 to 1023 m21 sr21 and higher d values (.0.1) (Figs. 14c–f).

On 25 February 2020, a shallow and weakly forced storm
was observed over Illinois. This system, initially a Great Plains
cyclone, later transitioned into the Miller type-B cyclone in
Fig. 14. The cloud on 25 February was typically less than 5 km
deep and featured cloud-top generating cells and elevated con-
vective cells with updraft and downdraft magnitudes of approxi-
mately63 m s21 at the cloud top (Figs. 15a,b). The CTTs in this
case ranged from 238 to 2208C. The dominance of liquid cloud
tops in this case was likely due to stronger vertical motions
and warmer CTTs with cloud tops exhibiting high b values
(.21023 m21 sr21) and low d values (,0.1) (Figs. 15c–f).

These three case studies illustrate that the presence of
liquid at cloud top depends both on CTT and the presence
of vertical motions near cloud top.

c. Cloud-top phase characterization summary

During IMPACTS the ER-2 sampled along a given flight
track deep stratiform cloud cover that often had cloud-top
generating cells if potential instability was present, stratiform
tops without generating cells, or elevated convection associ-
ated with potential instability above frontal surfaces (e.g.,
Varcie et al. 2023). Figure 1 shows the typical flight tracks
flown during different events and examples of typical cloud
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FIG. 12. (a) Number of elements present in the cloud-top layer.
Five elements present indicates a cloud-top depth of 150 m. Clouds
with less than five elements represent thin or attenuating cloud
tops with depths less than 150 m. (b) Normalized percentage of
phase detected in each of the five-volume elements making up the
cloud top with 1 at the top and 5 at the base of the cloud-top layer
(see Table 3).
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expanse from GOES-16 over the northeast United States. In
this section, CTP was quantified as a function of CTT for all
extratropical cyclones sampled by the ER-2 during IMPACTS
research flight legs (the ferry legs to and from the storm are
excluded).

Figure 16 illustrates the relationship between CTT and
CTP for all research flights. Final CTP classification was de-
termined by finding the most frequently occurring phase
among the first five cloud-top elements. The analysis of the
IMPACTS dataset reveals that 99.4% of the sampled cloud
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FIG. 13. Flight leg from 1547:40 to 1628:50 UTC 19 Jan 2022. This storm system was an Alberta
clipper. (a) Two Hz CRS Ze overlaid with temperature data (in 8C) from RAP analysis data valid
at 1600 UTC, (b) 2 Hz CRS Vr overlaid with RAP analysis equivalent potential temperature
(in K), (c) CPL d, (d) CPL b, (e) CPL phase classification (blue is ice, gray is liquid, and red is
uncertain), and (f) CTP classification (top 150 m, first five bins). Each bin represents 30 m. This
corresponds to the first five elements identified as cloud top in (g). (g) CTP (top 150 m).
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profiles had CTTs , 08C. Of these, 59.4% of clouds had
CTTs , 2408C, beneath the homogenous freezing tempera-
ture of ice. 39.6% of clouds sampled had CTTs . 2408C.
Within this subset, 21.5% were dominated by liquid cloud
tops, and 71.6% were dominated by ice cloud tops (Table 4).
Notably, Fig. 16 displays the presence of liquid cloud-top ele-
ments even at CTTs as low as 2378C. No SLW was found at
CTTs , 2378C. Approximately 3.5% of the sampled cloud
top with CTTs ranging from 2358 to 2408C were dominated
by SLW at cloud top. As CTT increased, the frequency of

liquid cloud tops also increased. Specifically, between 2308
and 2358C, 39.6% of cloud tops were identified as liquid, with
percentages of 55.7% between2258 and2308C, 62.3% between
2208 and 2258C, and 72.5% between 2158 and 2208C. The
highest frequency of liquid cloud tops, at 85.1%, occurred
between 2108 and 2158C. Interestingly, the percentage of
ice-dominated cloud tops increased at temperatures . 2108C.
These temperatures correspond to regions where secondary ice
production mechanisms are common (Field et al. 2017). This
analysis demonstrates that a significant portion of cloud tops
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FIG. 14. As in Fig. 13, but for a flight leg between 1249:49 and 1300:50 UTC 27 Feb 2020.
This storm system was a Miller type-B cyclone.
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observed over the northeast and midwest United States in cyclo-
nes during IMPACTS exhibited SLW at CTTs . 2308C, with a
higher occurrence at temperatures. 2208C.

6. Discussion

IMPACTS provided critical insights into the CTP of extra-
tropical cyclones over the northeast and midwest United
States, revealing that a significant fraction of cloud tops ex-
hibit SLW at CTTs . 2308C. These findings align with

previous research, such as Plummer et al. (2014), who docu-
mented the presence of SLW within cloud-top generating
cells during a limited number of in situ cloud-top samples.
Our extensive remote sensing dataset supports these earlier
observations, indicating that the presence of SLW is not only
common but also persists down to temperatures as low as
2358 to 2378C, depending on the accuracy of the RAP tem-
perature fields.

Ice formation often occurs in the cloud-top region of strati-
form clouds where 1–2 m s21 updrafts produce supercooled
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FIG. 15. As in Fig. 13, but for a flight leg between 2208:34 and 2225:20 UTC 25 Feb 2020.
This storm system was a Great Plains cyclone.
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water droplets and are associated with cloud-top generating
cells (e.g., Rosenow et al. 2014; Plummer et al. 2014, 2015).
These droplets permit efficient ice nucleation pathways such
as contact nucleation and immersion freezing nucleation (e.g.,
Young 1974) within what is typically the coldest region of the
cloud. This study’s observations of SLW at cloud top confirm
that the updraft intensity within generating cells is sufficient
to maintain SLW as predicted Rauber and Tokay (1991),
even at temperatures nearing that required of homogeneous
freezing.

The implications of our findings extend to climate model-
ing. In extratropical cyclones, the cloud phase is a key factor
in determining cloud radiative forcing, particularly at cloud
top. In this analysis, liquid was observed at cloud top more
than 50% of the time at temperatures . 2308C. The critical
temperature threshold at which ice and liquid are equally
probable varies considerably in climate models depending on
the parameterizations used. For example, the parameteriza-
tion introduced by Del Genio et al. (1996, their Fig. 2) shows

that the 50% critical temperature threshold was 2178C in
clouds over land. Naud et al. (2006) found that the critical
temperature was variable relative to composited cyclone cen-
ters. Critical temperature thresholds, as discussed by Del
Genio et al. (1996) and Naud et al. (2006), provide a bench-
mark for model intercomparisons. We note that the Del
Genio et al. (1996) parameterization applies to mixed-phase
clouds throughout the cloud depth. Our results only apply to
the cloud top, which is a unique environment because ice par-
ticles begin their growth there and are small, and updrafts
within generating cells are unusually strong compared to the
body of the stratiform cloud below (Rauber and Tokay 1991;
Rosenow et al. 2014; Keeler et al. 2017). Nevertheless, be-
cause of the importance of cloud top in both cloud radiative
forcing and ice nucleation, it is important that both climate
and forecasting models accurately depict cloud-top phase.
Our observations underscore the importance of accurately
representing CTP correctly in climate models, given CTP’s
impact on the broader climate system.

7. Conclusions

This study used airborne remote sensing observations to
determine and statistically represent cloud-top phase (CTP)
of extratropical cyclones over the northeast and midwest
United States. The main question addressed by this study was
what percentage of cloud tops sampled during the Investiga-
tion of Microphysics and Precipitation for Atlantic Coast-
Threatening Snowstorms (IMPACTS) had supercooled liquid
water (SLW) present at cloud top as a function of cloud-top
temperature (CTT). A training dataset was developed for
cloud liquid and cloud ice to create probabilistic classifications
based on Cloud Physics Lidar data. These classifications were
used to differentiate between liquid and ice cloud tops and
characterize CTP. Case studies were presented illustrating
examples of SLW at cloud top at different ranges of CTTs
(238, CTT, 2358C).

The analysis of the IMPACTS dataset reveals that 99.4%
of the sampled cloud columns had CTTs , 08C. Of these,
59.4% of clouds had CTTs , 2408C, beneath the homoge-
nous freezing temperature of ice; 39.6% of clouds sampled
had CTTs . 2408C. Within this subset, 21.5% were domi-
nated by liquid cloud tops, and 71.6% were dominated by ice

FIG. 16. Cloud-top phase as a function of CTT for all columns sam-
pled during IMPACTS (see Table 4).

TABLE 4. CTP as a function of CTT.

Cloud-top
temperature Liquid Ice Unknown

Number of
cloud-top bins

Number of
cloud-top profiles

Percentage of
cloud-top profiles

,2408C 0% 100% 0% 132 883 26 237 59.1%
2408 to 2358C 3.5% 76.3% 20.1% 14 588 2919 6.5%
2358 to 2308C 39.6% 38.8% 21.5% 16 203 3244 7.3%
2308 to 2258C 55.7% 25.9% 18.3% 14 161 2833 6.3%
2258 to 2208C 62.3% 16.7% 20.9% 10 981 2197 4.9%
2208 to 2158C 75.2% 8.7% 16% 10 564 2122 4.7%
2158 to 2108C 85.1% 5.5% 9.3% 12 006 2417 5.4%
2108 to 258C 77.0% 14.7% 8.2% 6419 1287 2.9%
258 to 08C 64.3% 25.6% 9.8% 3679 745 1.7%
.08C 100% 0% 0% 1410 287 0.6%
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cloud tops. Liquid cloud-top elements were observed at CTTs
as low as 2378C. Approximately 3.5% of the sampled cloud
tops with CTTs ranging from 2358 to 2408C were dominated
by SLW. As CTTs increased, the frequency of liquid cloud
tops also increased. Specifically, between 2308 and 2358C,
39.6% of cloud tops were identified as liquid, with percen-
tages of 55.7% between 2258 and 2308C, 62.3% between
2208 and 2258C, and 72.5% between 2158 and 2208C. The
highest frequency of liquid cloud tops, at 85.1%, occurred be-
tween2108 and2158C.

IMPACTS provided new insight into extratropical cyclone
CTP through the use of airborne cloud radar, lidar, and ther-
modynamic observations. More theoretical, observational, and
modeling studies are required to understand the distribution and
processes that maintain and sustain SLW at cloud top within ex-
tratropical cyclones. Future work should aim to look at better
understanding the dynamics of cloud-top generating cells and
how ice is produced within them. During IMPACTS, there were
very few instances where the P-3 flew through cloud top to col-
lect microphysical information about this region of cloud. In fu-
ture field campaigns, there should be concerted efforts to
sample extratropical cyclone cloud tops to investigate the spatial
distribution of liquid and glaciated cloud tops, cloud-top gener-
ating cells, and elevated convective cells within winter storms.
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