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ABSTRACT: Recent upgrades, calibration, and scan-angle bias reductions to the Advanced Microwave Precipitation

Radiometer (AMPR) have yielded physically realistic brightness temperatures (Tb) from the Olympic Mountains

Experiment and Radar Definition Experiment (OLYMPEX/RADEX) dataset. Measured mixed-polarization Tb were

converted to horizontally and vertically polarized Tb via dual-polarization deconvolution, and linear regression equations

were developed to retrieve integrated cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using

simulated AMPR Tb and modeled atmospheric profiles. These equations were tested using AMPR Tb collected during four

OLYMPEX/RADEX cases; the resulting geophysical values were compared with independent retrieval (1DVAR) results

from the same dataset, whileWV andWSwere also compared with in situ data. Geophysical calculations using simulatedTb

yielded relatively low retrieval and crosstalk errors when compared with modeled profiles; average CLW, WV, and WS

root-mean-square deviations (RMSD) were 0.11mm, 1.28mm, and 1.11m s21, respectively, with median absolute devia-

tions (MedAD) of 2.263 1022 mm, 0.22mm, and 0.55m s21, respectively. When applied to OLYMPEX/RADEX data, the

new retrieval equations compared well with 1DVAR; CLW, WV, and WS RMSD were 9.95 3 1022 mm, 2.00mm, and

2.35m s21, respectively, and MedAD were 2.88 3 1022 mm, 1.14mm, and 1.82m s21, respectively. WV MedAD between

the new equations and dropsondes were 2.10 and 1.80mm at the time and location of minimum dropsonde altitude, re-

spectively, while WS MedAD were 1.15 and 1.53m s21, respectively, further indicating the utility of these equations.
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1. Introduction

a. Overview

The purpose of this manuscript is to summarize the dual-

polarization upgrade of the National Aeronautics and Space

Administration (NASA) Advanced Microwave Precipitation

Radiometer (AMPR), provide details of geophysical retrievals

that are possible with the upgraded AMPR system, and dem-

onstrate these retrieval methods using data from NASA’s

Olympic Mountains Experiment (OLYMPEX) and Radar

Definition Experiment (RADEX). OLYMPEX took place

from fall 2015 to spring 2016 in collaboration with RADEX

(Houze et al. 2017). The primary goal of OLYMPEX was to

examine how precipitation is affected by flow over theOlympic

Mountains of Washington in the United States, while RADEX

focused on improving satellite-based retrievals of cloud and

precipitation properties. Numerous instruments, including

AMPR, were deployed to the study domain around north-

western Washington. AMPR, which flew on board a NASA

Earth Research 2 (ER-2) high-altitude research aircraft during

OLYMPEX/RADEX, is a cross-track scanning total power

radiometer that operates at four radio-frequency channels with

central frequencies at 10.7, 19.35, 37.1, and 85.5GHz (Spencer

et al. 1994). At the 20-km primary flight altitude for the ER-2

during OLYMPEX/RADEX, the 10.7 and 19.35GHz fre-

quencies have a footprint diameter of roughly 2.8 km, while the

37.1 and 85.5GHz frequencies have footprint diameters of

approximately 1.5 and 0.6 km, respectively. However, all

AMPR data are sampled at the 85.5-GHz (0.6 km) channels’

intervals in the along-scan (i.e., cross-track) direction (Spencer

et al. 1994).

b. AMPR polarimetric upgrade and calibration

AMPR’s antenna system consists of a dedicated feedhorn

for the 10.7-GHz channel and a separate feedhorn for the

higher-frequency channels. Both feedhorns have dual-

orthogonal polarization outputs for each frequency channel.

In past studies (e.g., Vivekanandan et al. 1993; Smith et al.

1994; Evans et al. 1995; McGaughey et al. 1996; Cecil et al.

2010), only one feedhorn polarization was measured using a

single receiver for each channel. AMPR’s two fixed feedhorns

combined with cross-track scanning via a rotating mirror re-

sulted in brightness temperature (Tb) scenes that were verti-

cally polarized at one edge of the scan, horizontally polarized

at the other edge, andmixed polarization for intermediate scan

angles. With this configuration, it was not possible to unam-

biguously retrieve true horizontally and vertically polarized Tb

across the entire AMPR scene. To account for this, a second

receiver was added for each channel tomeasure the orthogonal
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feedhorn polarization. This allowed for orthogonal mixed-

polarization Tb values to be gathered across the entire

AMPR scene, fromwhich vertical- and horizontal-polarization

Tb suitable for geophysical parameter retrievals can be es-

timated. Due to the fixed feedhorns and rotating mirror,

AMPR scene polarization basis rotates with respect to the

feedhorn polarization basis for each scan angle. A diagram

presenting these system and scan properties can be found

in Fig. 1.

Following Piepmeier et al. (2008), for a rotation anglef0, the
relationship between Tb in the scene polarization basis and

measured Tb in the feedhorn polarization basis is given by
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where Tf is the measured Tb vector at the feedhorn, T is

the true scene Tb vector, Tb subscripts y, h, 3, and 4 indicate

vertically polarized, horizontally polarized, third stokes, and

fourth stokes Tb, respectively, and nominally for AMPR f0 5
f 2 458, where f is off-nadir scan angle. In Eq. (1), f is mea-

sured positive (negative) toward the starboard (port) side of

the observation platform. The 458 difference between f0 and
f is due to theAMPR feedhorn polarization axes being rotated

458 about the scan axis. From Eq. (1), exact estimation of Ty

and Th requires measurement of T3, which is not presently

measured in the AMPR system. For AMPR Tb scenes where

the vertically and horizontally polarized signals are uncorre-

lated, Eq. (1) can be simplified to produce
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the reverse transformation of which is given by

T 5 u(2f0) � T
f
, (3)

which can be used to estimate true horizontally and vertically

polarized Tb from the mixed-polarization Tb measured at the

orthogonal channels for each AMPR receiver. For a wind-

roughened ocean scene observed by AMPR, Ty and Th are not

completely uncorrelated and there exists a very weak wind-

direction-dependent T3 signal for low-to-moderate wind

speeds. The error resulting from this is ignored in this study.

Equations (2) and (3) are specific to the AMPR system, as

measurements of T3 and T4 are not recorded; thus, V(f0) � T

FIG. 1. Diagram illustrating the polarization mixing geometry present within the AMPR

system during a typical flight. In this diagram, f is the scan angle, u is the reflector-normal

angle, c is the polarization-rotation angle of the feedhorn, and a 5 f0 is the polarization-

basis-rotation angle; all other variables correspond to their respective vectors or angles as

indicated within the diagram. Adapted from Biswas et al. (2017).
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in Eq. (1) is different than u(f0) � T in Eq. (2). It should be

noted that Eq. (2) reaches singularity at f0 5 08, which coin-

cides with an AMPR scan angle of f5 458 (i.e., the edge of the
swath). At this angle, Eq. (3)’s solution diverges. As a result,

uncertainty in input Tb increases for scan angles nearer the

edge of the scan, which must be taken into consideration when

interpreting results around the swath edges.

Raw AMPR measurements of radiometer counts for each

frequency and polarization channel are converted to physically

meaningfulTb using a two-point linear calibration in which one

radiometrically ‘‘hot’’ and one ‘‘cold’’ target with known Tb

values are sequentially viewed to determine radiometer system

gain and Tb offset. In the typical scan sequence during

OLYMPEX/RADEX, AMPR’s mirror rotated to view each

calibration target (hereafter simply ‘‘target’’) after every

fourth scan. The ‘‘hot’’ target is controlled by a heater and is

typically 318K. However, the ‘‘cold’’ target is cooled using

ambient air from around the aircraft, and thus its temperature

varies with aircraft altitude. It should be noted that the quan-

tity derived after applying gain and offset corrections to the

radiometer counts is proportional to the total power entering

the antenna aperture from all possible directions, which is

known as antenna temperature. For geophysical retrievals, we

are interested in total power received by the antenna main

beam, which is Tb.

There are three dominant error sources in deriving Tb from

antenna counts: error in estimation of receiver gain and offset,

antenna pattern correction, and complicated polarization

mixing geometry. For receiver gain and offset correction, the

accuracy of two-point calibration depends on knowledge of hot

and cold target Tb observed by AMPR. The targets are de-

signed to be highly emissive (i.e., .99%), and their physical

temperatures are measured using a platinum resistance ther-

mometer, which yields accurate estimation of target Tb.

However, in some cases, particularly for the 10.7-GHz channel,

the antenna beam overilluminates the targets, yielding uncer-

tainty in target Tb. To compensate, a correction is applied to

the target temperatures, but some residual effects remain. For

antenna pattern correction, accurate knowledge of AMPR’s

antenna pattern is needed for each scan position to model

energy entering the antenna from solid angles outside of the

main beam. Complicated polarization mixing geometry due to

AMPR’s fixed feedhorns and rotating reflector (Fig. 1) in-

volves three key angles:

d Polarization-rotation angle (c), the angle between the feed-

horn polarization axis and the instrument zenith direction,

which is designed to be 458 for AMPR
d Reflector-normal angle (u), the angle between the reflector

normal and the reflector rotation axis; this angle typically

points along the flight direction and is designed to be 458 so
the antenna beam points toward nadir in the middle of an

AMPR scan
d Scan angle (f), the rotation angle of the mirror, with f 5 08
at nadir

Any deviation in these angles from nominal values may result

in error during dual-polarization deconvolution when nominal

values are assumed. In addition to these three error sources,

cross-polarization leakage at the feedhorn may exist due to

nonideal nature of the transducer that separates the orthogonal

polarizations. A generalized model for AMPR Tb at any f is

given by

T
b(f)

5 (12h)[T
b,y
A(u,c,f) 1 T

b,h
B(u,c,f)]

1 h[T
b,y
B(u,c,f) 1 T

b,h
A(u,c,f)], (4)

where h is cross-polarization fraction, and A and B are mixing

weights of the polarization (Weng et al. 2003). With nominal

values of u and c, values ofA andB are trigonometric functions

of f only, which simplifies dual-polarization deconvolution.

c. Geophysical retrievals using microwave radiometer

Many studies have focused on obtaining geophysical infor-

mation from radiometric data. Several of these efforts aimed to

calculate surface rain rates (e.g., Kummerow et al. 1996;Wentz

and Spencer 1998; Shin and Kummerow 2003; Bowman et al.

2009) and hydrometeor properties (e.g., Smith et al. 1994;

Evans et al. 1995; Leppert and Cecil 2015) from airborne and

spaceborne platforms. Additional studies utilized microwave

radiometers to estimate other geophysical parameters. For

example, Hong and Shin (2013) investigated methods to re-

trieve sea surface wind speed from spaceborne microwave ra-

diometers. Amarin et al. (2012) and Cecil and Biswas (2017)

developed methods to retrieve wind speeds around tropical

systems using aircraft-based C-band microwave radiometer,

while Wentz and Spencer (1998) developed an algorithm to

simultaneously retrieve cloud liquid water, water vapor, wind

speed, and rain rate using the Special Sensor Microwave

Imager, following Wentz (1997). Similar work was performed

by Biswas et al. (2017), who followed the methods of Wentz

and Meissner (2000, 2007) to develop geophysical retrieval

equations before applying them to AMPR data from

OLYMPEX/RADEX.

The physical bases for these retrievals are rooted in prop-

erties of a calm ocean surface and atmospheric constituents

when viewed at microwave frequencies. As described in

Wilheit and Chang (1980), a calm ocean surface has very low

emissivity due to water’s large dielectric constant. Wind

roughens the ocean surface and generates foam, increasing

ocean surface emissivity, especially when viewed at off-nadir

scan angles (Wilheit and Chang 1980). In contrast to the ra-

diometrically cool ocean, liquid hydrometeors in the atmo-

sphere yield higher Tb due to their higher emissivity, which is

highly dependent on wavelength as Mie (1908) resonance and

atmospheric absorption become more prominent at higher

frequencies (Wilheit and Chang 1980). In addition, when

viewed from airborne or spaceborne radiometers, atmospheric

effects must be considered when computing Tb, as various at-

mospheric constituents (e.g., oxygen, water vapor) absorb and

scatter shortwave and longwave radiation.

Utilizing these radiative properties, it is possible to retrieve

column-integrated cloud liquid water, water vapor, and 10-m

wind speed over the ocean using Tb at multiple frequencies

within the microwave spectrum. For AMPR’s channels,

10.7 GHz is most capable of viewing the ocean surface due

to its relatively low attenuation, while 19.35 GHz is partially
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influenced by cloud water, 37.1 GHz is strongly affected by

cloud water, and 85.5 GHz is most sensitive to cloud parti-

cles (Spencer et al. 1994). In addition, high water vapor

emissions may yield relatively high Tb at 85.5 GHz (Spencer

et al. 1994). Section 2 below will describe how these prop-

erties were used to develop, train, and check geophysical

retrieval equations for AMPR data via numerical simula-

tions, with an uncertainty analysis from these simulations

presented in section 3. Application of the retrieval equa-

tions to OLYMPEX/RADEX data will be discussed in

section 4, the results of which are shown in section 5.

Section 6 presents a summary and future work.

2. Forming the retrieval equations

Themethods discussed herein and in section 4 follow Biswas

et al. (2017). To develop multiple-linear regression equations

for the geophysical retrievals, 523 176 globally distributed at-

mospheric profiles from the Global Data Assimilation System

(GDAS; NCEP 2000) were used to form a Tb dataset. Cloud-

top and cloud-bottom properties were obtained from ocean

climatology (Wisler and Hollinger 1977). When deriving this

physical Tb dataset, instead of using the sea surface tempera-

ture (SST) and wind speed data from the GDAS profiles, SST

was randomly varied from 08 to 308C and wind speed was

randomly varied from 0 to 20m s21, ignoring wind direction.

This was done to decouple the atmosphere and sea surface

when forming the Tb dataset that would be used to train the

retrieval equations.

The resulting physical Tb dataset was used in a radiative

transfer model (RTM) to simulate Tb that would be observed

by AMPR. Within the RTM, following Biswas et al. (2013),

atmospheric absorption coefficients were calculated using

Rosenkranz models for cloud liquid water (Liebe et al. 1991),

oxygen (Liebe et al. 1991), nitrogen (Rosenkranz 1993), and

water vapor (Rosenkranz 1998). While residual uncertainties

in these models must be considered, it is worth noting that these

absorption models were used in several independent studies

during the Global Precipitation Measurement (GPM) cross-

calibration activity (Biswas et al. 2013), and have been found to

provide an acceptable standard over the AMPR frequency

range. The emissivity model in Meissner and Wentz (2012) was

used to compute surface emission and scattering; this model

was developed and tested with many well-calibrated micro-

wave radiometers (Meissner and Wentz 2012), and is accept-

able for use with AMPR’s frequencies.

These models yielded the following general expression,

which is adapted from Meissner and Wentz (2012), for top-of-

atmosphere Tb:

T
B,p

5 T
BU

1 tE
p
T

s
1 tT

BV
, (5)

where TB,p is top-of-atmosphere Tb, TBU is upwelling atmo-

spheric Tb, t is atmospheric transmissivity, Ep 5 12 Rp where

Rp is sea surface reflectivity, Ts is SST, and TBV is downwelling

sky radiation scattered by the ocean surface. AMPR-observed

Tb values were simulated for Earth-incidence angle (EIA)

values of 08 to 508 at a 0.28 increment, and 0.5K of Gaussian

noise was introduced into the RTM to maintain stability (Wentz

and Meissner 2000). This 0.5K of Gaussian noise is within

AMPR’s noise-equivalentdifferential temperature (NEDT),which

we determined to be 0.5–1.0K during OLYMPEX/RADEX

(not shown), and thus represents the uncertainty in AMPR-

observed Tb values. Since this noise was introduced into the

simulated Tb values before their use in training the regres-

sion equations, the noise is uncorrelated between the two

polarizations. Other sources of uncertainty exist in the simu-

lations, such as uncertainty in GDAS SST, but these effects

have been neglected due to their relatively small magnitude.

For example, Bhargava et al. (2018) noted that GDAS SSTwas

robust enough to be used as ‘‘truth’’ values in their study,

and yielded an average bias# 0.5 K (albeit, during the month

of June). We have also neglected uncertainties in EIA, as

these are typically around 0.18, which results inTb uncertainty

of 0.1–0.2 K (albeit, for conically scanning microwave radi-

ometers; Berg et al. 2013).

Multiple linear regression was performed on the simulated

Tb data [from Eq. (5)] to derive coefficients for the geophysical

retrieval equations, followingWentz andMeissner (2000). The

geophysical parameters for which equations were developed in

this study were: column-integrated cloud liquid water (CLW),

column-integrated total precipitable water [herein ‘‘water

vapor’’ (WV)], and 10-m wind speed over the ocean (WS).

The general forms of the retrieval equations are

CLW(mm) 5 a
0
1 a

1
ln(2902T

b19y
) 1 a

2
ln(2902T

b19h
)1 a

3
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b85y
)
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4
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where the ‘‘a’’ terms are regression coefficients;Tb is in kelvins;

y and h subscripts indicate vertical and horizontal polarization,

respectively; the 10, 19, 37, and 85 subscripts indicate the 10.7-,

19.35-, 37.1-, and 85.5-GHz AMPR channels, respectively; and
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SST is sea surface temperature in kelvins. Coefficients in

Eqs. (6)–(8) were generated for each AMPR EIA as seen in

Fig. 2. The AMPR channels used in Eqs. (6)–(8) and the

modifications to each Tb (e.g., use of natural logarithms) were

determined via an empirical analysis (not shown) during which

more than 100 regression equations were tested and the com-

binations of channels that yielded the most optimal tradeoffs

between low retrieval error (i.e., how error in the retrieved

variable is affected by variations in that variable) and crosstalk

errors (i.e., how error in the retrieved variable is affected by

variations in other variables) were selected. As an initial test of

Eqs. (6)–(8), mean retrieval and crosstalk errors (i.e., devia-

tions herein) across the 523 176 GDAS simulations were cal-

culated using the differences between the geophysical values

output from Eqs. (6)–(8) and the same geophysical parameters

observed in the GDAS profiles, averaged across all EIAs. In ad-

dition to mean retrieval and crosstalk error, the retrieval root-

mean-square deviation (RMSD) was calculated to obtain a more

robust measurement of retrieval uncertainty. For eventual com-

parison with dropsonde data from OLYMPEX/RADEX, which,

as will be discussed in sections 4 and 5, had far fewer data

points available than the simulations, median absolute de-

viation (MedAD) was also calculated for all AMPR pixels

(i.e., 0 to n) as

MedAD5median(jpredicted
0,n

2 observed
0,n
j). (9)

It should be noted that Eq. (8) is designed to calculate any

10-m wind speed value over the ocean, which differs from

past methods (e.g., Wilheit and Chang 1980; Hong and Shin

2013) that utilized different equations for different ranges of

wind speeds. This reduces artifacts that may occur when

comparing multistep calculations to those obtained via

other methods, but may increase retrieval error for lower

wind speeds (e.g., Hong and Shin 2013). Furthermore,

Eq. (7) does not utilize AMPR’s 85.5-GHz channel, despite

the potential influence from highWV at this frequency (e.g.,

Spencer et al. 1994). This decision was made based on a brief

sensitivity test, which showed little improvement in WV

retrieval RMSD compared to Eq. (7) (i.e., difference of

approximately 3.0 3 1022 mm) when 85.5-GHz data were

included in the regression equation, but this may be ex-

plored further in future work.

Last, it has been demonstrated how WV is strongly corre-

lated with SST (e.g., Stephens 1990). Our decision to include

SST in Eq. (7) as a regression variable resulted from testing

various methods to removeWV cross-track stripes observed in

Biswas et al. (2017), which were largely successful. However,

variance in our WV retrievals during a given flight are not

related to SST, since, as we discuss in section 4, we used the

median SST observed during the flight as the SST value for all

AMPR pixels during that flight. To confirm this, a principal

component analysis (PCA; not shown) was performed, which,

after standardizing the data, demonstrated that approximately

97.8%of the variance in simulatedTbwas explained by the first

two principal components. The correlation between SST and

these two principal components was extremely small (i.e.,

magnitude of 10210 or less), further indicating essentially no

variance explanation from the SST term. Thus, variations in

WV calculated via Eq. (7) were solely due to variations in

AMPR Tb during the flight.

In this same regard, Wilheit and Chang (1980) noted that

including Tb from a frequency around 37.1GHz only slightly

improved WS retrieval. During our sensitivity tests, we also

noted minimal improvement in WS retrieval after including

37.1-GHz Tb. However, we also noted that 37.1-GHz Tb sig-

nificantly reduced cross-track stripe artifacts that resulted from

use of a single WS equation across all ranges of wind speed,

which warranted its inclusion in Eq. (8).

3. Statistical results of retrieval simulations

This section presents the results of geophysical parameters

calculated using Eqs. (6)–(8), with simulated Tb values from

Eq. (5) as inputs, compared to geophysical values obtained

from the 523 176 GDAS profiles. Retrieval RMSD for each

parameter as a function of EIA is shown in Fig. 3. Starting with

CLW, the trend of CLWversus EIA in Fig. 3 demonstrates that

retrieval error depends strongly on EIA. For EIA around 08,
CLWRMSDwas at its maximum, 0.116mm, primarily due to the

similarity between horizontally and vertically polarized Tb at

nadir (e.g., Wilheit and Chang 1980), which makes it difficult to

interpret differences between Tb from AMPR’s orthogonal

receivers for near-nadir EIAs. CLW RMSD decreased farther

from nadir as horizontally and vertically polarized Tb values

diverge (all else being equal), reaching a minimum of 9.8 3
1022mm around 438. The slight RMSD increase after EIA 5
438 was likely due to the greater distance in the atmosphere

through which the AMPR signal must travel.

CLW retrieval and crosstalk errors averaged across all EIAs

for a range of geophysical values can be found in Fig. 4. From

Fig. 4, mean CLW retrieval error was around 0mm for the

0.025–0.3mm CLW range and standard deviation remained

within 0.1mm, indicating that Eq. (6) produced fairly consis-

tent results across a range of CLW. Crosstalk errors of CLW

with WV, WS, and SST were also fairly low, albeit less stable

than retrieval error across the range of values considered.

Mean CLW–WS crosstalk error increased for WS greater than

15m s21 but remained less than roughly 0.05mm, and standard

deviation was around 0.1mm. CLW–WV crosstalk error was

more chaotic, with mean error nearly unbiased for WV around

0mm but increasing in magnitude to approximately 0.1mm for

WV around 60mm, and standard deviation increased from

about 0.05mm for WV near 0mm to more than 0.15mm for

WV greater than 30mm. This may have been due to in-

creased attenuation from higher WV concentration result-

ing in higher CLW–WV crosstalk error (e.g., Liebe 1985,

1989). Mean CLW–SST crosstalk error gradually increased

from about 20.02 to 0.04mm across the 08–308C range of

SST considered, and standard deviation remained about 0.1–

0.15mm. Deviations in CLW retrieval and crosstalk values may

have also occurreddue to inaccuracies in the assumptions present

in Eq. (6) when attempting tomodel CLWbased onTb values, as

well as residual uncertainties from the radiativemodels discussed

in section 2. The averageCLWretrieval RMSDwas 0.11mmand

median retrieval MedAD was 2.26 3 1022mm.
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FIG. 2. Plots of the regression coefficients in the retrieval equations for (top left) cloud liquid water (red lines), (middle left) water vapor

(green lines), and (bottom left) 10-m wind speed over the ocean (blue lines) as a function of AMPR Earth-incidence angle (EIA). (right)

Equations (6)–(8) are shown next to their respective variable.
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Next, WV retrieval and crosstalk errors are shown in Fig. 5,

whileWV retrieval RMSDas a function of EIA can be found in

Fig. 3. As with CLW, WV RMSD reached a maximum of

1.32mm around nadir, but decreased exponentially with in-

creasing EIA, likely owing to increasing differences in hori-

zontally and vertically polarized Tb. In general, WV error

trends in Fig. 5 were less chaotic than those for CLW in Fig. 4,

which may have been due to higher CLW values being less

common in the GDAS data, leading to chaotic error trends as a

result of lower sample size. Mean WV retrieval error was

around 0mm for WV values less than 30mm, with a standard

deviation of approximately 1mm. Mean error was slightly

negative between 30 and 50mm, reaching peak magnitude of

0.5mm around 40mm, with a standard deviation around

1.5mm. Once WV increased above 50mm, retrieval error in-

creased considerably, with mean error of 1mm and standard

deviation around 1.5mm for WV of 60mm and greater. This

trend ofWV error magnitude increasing with increasingWV is

similar to CLW–WV crosstalk error increasing with increasing

WV in Fig. 4, possibly due to increased attenuation. Further

examining Fig. 5, WV crosstalk errors with CLW,WS, and SST

were all fairly stable, with near-zero mean WV crosstalk error

and standard deviation of 1–1.5mm across the range of values

considered. Average WV retrieval RMSD was 1.28mm and

median retrieval MedAD was 0.22mm, indicating that Eq. (7)

provided fairly precise WV estimation.

Last, WS retrieval and crosstalk errors are presented in

Fig. 6, while WS RMSD as a function of EIA can be found in

Fig. 3. From Fig. 3, similar to CLW and WV, the WS RMSD

reached a maximum around 1.41m s21 at nadir before de-

creasing with increasing EIA. It can be noted that the range of

WS RMSD in Fig. 3 is the largest of the three parameters,

owing largely to its dependence on differences between hori-

zontally and vertically polarized Tb (e.g., Wilheit and Chang

1980). In Fig. 6, as with WV, WS crosstalk errors with WV,

CLW, and SST were fairly uniform, with a mean around 0m s21

and standard deviation of approximately 1m s21 across the

range of WV, CLW, and SST examined; the main exception is

WS-SST crosstalk error for SST around 08–38C, where mean

error varied from about 20.8 to 20.4 m s21. Thus, as with

Eq. (7) for WV, Eq. (8) provided a fairly precise estimate of

10-m WS across a variety of WV, CLW, and SST. Mean WS

retrieval error fluctuated from negative values for WS less

than 5 m s21, to positive values for WS between 5 and

15 m s21, and slightly negative for WS greater than 15 m s21.

Underestimation of WS less than 5m s21 makes sense physi-

cally, since the 10.7-GHz AMPR channel is sensitive to SST

and surface disturbances (e.g., Wentz and Meissner 2007;

FIG. 3. Plots of RMSD as a function of EIA for the simulated retrievals of (top left) CLW (red line), (top right)

WV (green line), and (bottom) WS (blue line). The RMSD values at each EIA were averaged across all GDAS

simulations. In the RMSD calculations, the ‘‘predicted’’ CLW, WV, and WS values were those from Eqs. (6)–(8),

and the ‘‘observed’’ values were the geophysical parameters from the GDAS profiles.
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Hong and Shin 2013), but wind speeds less than 5m s21 may

not disturb the ocean surface considerably from a flat calm,

yielding little response in 10.7-GHz Tb and, thus, wind speed

underestimation (e.g., Wilheit and Chang 1980; Hong and Shin

2013). Conversely, the slight overestimation in WS between 5

and 15m s21 may be due to greater surface disturbance leading

to greater response in the 10.7-GHz channel than expected.

Other sources of error exist, such as use of multiple-linear re-

gression for the nonlinear relation between WS and Tb

(Wilheit and Chang 1980), residual uncertainty from the ra-

diative models in section 2, and other inaccuracies in the as-

sumed structure of Eq. (8) for deriving WS from Tb. However,

WS retrieval errors were relatively low under most conditions in

Fig. 6, with mean error magnitude and standard deviation less

than 1m s21 for WS between 3 and 19m s21. The average WS

retrieval RMSD was 1.11m s21, and median retrieval MedAD

was 0.55m s21.

4. Methods for testing the retrieval equations

This section details how Eqs. (6)–(8) were applied to data

collected during OLYMPEX/RADEX. In this study, we

evaluate the performances of these equations over four ER-2

flights: 23 November, 24 November, 10 December, and

13December 2015. As part of our analysis, we first performed a

Tb calibration for all AMPR data collected during these flights

to remove biases resulting from the four quantities in Eq. (4).

After deconvolving the raw AMPR Tb data into pure hori-

zontally and vertically polarized Tb, following Yang et al.

(2013), any departure in observed Tb from a predicted value

during each flight constituted a Tb bias via the relation

T
b,bias

5 T
b,observed

2 T
b,simulated

. (10)

In our analysis, the Tb,observed values were those obtained

during the ER-2 flights, while the Tb,simulated values were cal-

culated fromGDAS data points throughout each AMPR flight

path using Eq. (5). However, unlike the calculations discussed

in section 2, we utilized the SST andwind speed values from the

GDAS profiles throughout each flight to provide an accurate

representation of the atmospheric conditions during the flights

(i.e., SST and wind speed were not randomly selected when

calibrating the AMPR Tb data).

The Tb at each scan angle was averaged for each case to

evaluate mean bias in horizontally and vertically polarized de-

convolved Tb, seen in Fig. 7. In general, observed horizontally

FIG. 4. Plots of (top left) cloud liquid water retrieval error and (top right) the cloud liquid water crosstalk errors

with 10-m wind speed, (bottom left) water vapor, and (bottom right) sea surface temperature calculated using

Eqs. (6)–(8), with simulated AMPR Tb as input values, compared to geophysical values obtained from the NCEP

GDAS atmospheric profiles. The red dotted line in each plot indicates themean error averaged across all EIAs, and

the dashed lines in each plot indicate one standard deviation in the error across all EIAs.
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polarized AMPR Tb tends to be more positively biased while

vertically polarized Tb tends to be more negatively biased. To

account for this, the Tb bias resulting from all four parameters

in Eq. (4) was calculated for each scan angle during each flight

(not shown), and the resulting values were subtracted from the

Tb biases in Fig. 7, yielding the values in Fig. 8. This Tb bias

correction was applied to all AMPR scans during the four case

dates prior to their use in the geophysical retrievals. In each

OLYMPEX/RADEX case, AMPR surface pixels were

masked from the retrieval analyses if they were over land,

based on visual inspection of the data, or if the ER-2 roll angle

was greater than 18.
The performances of Eqs. (6)–(8) were analyzed via two

methods: comparisons with an independent retrieval method

and comparisons with in situ observations. In this study, the

selected independent retrieval method was a one-dimensional

variational (1DVAR) technique (Duncan and Kummerow

2016). While the 1DVAR presented in Duncan and

Kummerow (2016) was developed for use with conically

scanning microwave radiometers, such as the GPMMicrowave

Imager (GMI), Schulte and Kummerow (2019) and Schulte

et al. (2020) demonstrated how 1DVAR is also applicable to

cross-track-scanning radiometers. The 1DVAR is an optimal

estimation technique, based on Bayes’s theorem, used to de-

termine the state of the atmosphere based on input Tb values

and an input a priori vector of state variables, which is needed

to constrain the solution (Duncan and Kummerow 2016;

Schulte and Kummerow 2019; Schulte et al. 2020). This inverse

method of estimating the atmosphere’s state from input Tb, as

shown and discussed in Schulte and Kummerow (2019) and

Schulte et al. (2020) based on the full mathematical description

provided in Rodgers (2000), may be expressed mathemati-

cally as

y 5 f (x,b) 1 « , (11)

where y is a vector containing the observed Tb values, x is a

vector containing the atmospheric parameters of interest, b

is a vector containing additional atmospheric features that

influence Tb but are not directly of interest, f is a forward

model that relates the atmospheric variables to the observed

Tb values, and « represents errors caused by noise, uncer-

tainties in the atmospheric parameters contained within

vector b, etc.

The one-dimensional variational technique provides a method

by which the vector x in Eq. (11) can be determined via

inversion using the observed Tb values, a priori information

about the state of the atmosphere, and an estimation of

errors. Using these inputs, 1DVAR calculates a cost func-

tion that considers the difference between a given solution

[from Eq. (11)] and the a priori state, as well as the difference

FIG. 5. As in Fig. 4, but for (top left) water vapor retrieval error and (top right) the water vapor crosstalk errors with

cloud liquid water, (bottom left) 10-m wind speed, and (bottom right) sea surface temperature.
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between the observed Tb values and the Tb values predicted by

the forward model in Eq. (11):

F5 (x2 x
a
)
T
S21
a (x2 x

a
)1 [y2 f (x,b)]TS21

y [y2 f (x,b)],

(12)

where xa is the vector containing the a priori information, Sa is

the error covariance matrix for the a priori, and Sy is the error

covariance matrix for uncertainties in the forward model and

the Tb observations (Duncan and Kummerow 2016; Schulte

and Kummerow 2019; Schulte et al. 2020). Using Newton’s

method and assuming the error distribution is Gaussian,

Eq. (12) is solved iteratively until the gradient inFwith respect

to x reaches aminimum, at which point 1DVARhas converged

on a solution (i.e., CLW, WV, and WS herein) based on the

input Tb values (Duncan and Kummerow 2016).

In this study, the values of y in Eq. (11) were the observed

Tb values at the four AMPR frequencies collected during

the selected OLYMPEX/RADEX flights, and the vector x

included CLW, WV, and SST. The a priori state of the at-

mosphere was provided using Goddard Earth Observing

System Model, version 5 (GEOS-5), data from around the

time and location of the selected ER-2 flight path. With

these inputs, 1DVAR was used to compute CLW, WV, and

WS for the same cases and AMPR pixels as Eqs. (6)–(8). In

Eqs. (7) and (8), the median SST, calculated from the GDAS

data points along the ER-2 flight path for the selected case,

was used; median SST was chosen based on an empirical

analysis (not shown) that indicated slightly improved agree-

ment between 1DVAR and Eqs. (7) and (8) compared to using

mean SST. For qualitative comparisons between the two

methods, retrieved values throughout each ER-2 flight were

visualized using 2D histograms for all nonmasked pixels.

For quantitative comparisons, MedAD between the two

retrieval methods was calculated for all pixels via Eq. (9), as

was RMSD, where the values from Eqs. (6)–(8) were used

as ‘‘predicted’’ for the given geophysical parameter and

1DVAR’s retrieval for the same pixel and geophysical pa-

rameter was ‘‘observed.’’

Similar to Cecil and Biswas (2017),WS calculated using Eq. (8)

was also compared with 10-m winds calculated using dropsonde

data from the Advanced Vertical Atmospheric Profiling System

(AVAPS; Hock and Young 2017), which was flown on the

NASA DC-8 aircraft during OLYMPEX/RADEX (Houze

et al. 2017). WV calculated using Eq. (7) was also compared

with total precipitable water (TPW) calculated from

AVAPS. CLW comparisons were not made due to the po-

tential for very high spatial and temporal CLW variability,

but could be performed in future work. Following Uhlhorn

et al. (2007), if AVAPS data were available below 500m

AGL but unavailable below 150m AGL, 10-m wind speed

was calculated via

FIG. 6. As in Fig. 4, but for (top left) 10-m wind speed retrieval error and (top right) the 10-m wind speed crosstalk

errors with water vapor, (bottom left) cloud liquid water, and (bottom right) sea surface temperature.
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WS
10

5 0:8WS
0,500

, (13)

where WS10 is 10-m wind speed, and WS0,500 is mean AVAPS-

measured wind speed between 500m AGL and the surface. If

AVAPS data were available below 150m AGL, 10-m wind

speed was calculated using

WS
10

5 WS
0,150

3 [1:03142 4:071 3 1023(z)

1 2:465 3 1025(z2)2 5:445 3 1028(z3)], (14)

where WS0,150 is mean AVAPS-measured wind speed between

150m AGL and the surface, and z is mean height AGL for

wind data recorded below 150m AGL. While these equations

were derived to increase accuracy in radiometer estimations of

10-m hurricane-force winds (e.g., .50m s21), they are appli-

cable at lower wind speeds (Uhlhorn et al. 2007). TPW was

calculated using all AVAPS levels where dewpoint and pres-

sure data were available via

TPW5
1

rg

ðp2
p1

r(p) dp ’
1

rg

r(p
2
)1 r(p

1
)

2

� �
(p

2
2 p

1
) , (15)

where r is density of liquid water, g is gravitational accelera-

tion, and r(p) is mixing ratio integrated between pressure

levels p1 and p2 (AMS 2019).

Since AVAPS and AMPR were flown on separate aircraft,

there were spatial and temporal differences in their datasets.

Thus, WV and WS calculated using AVAPS and AMPR data

were compared at two times for each available dropsonde: at

the time of AVAPS minimum height (i.e., spatial offset be-

tween AMPR and AVAPS) and when AMPR passed over the

location where AVAPS reached its minimum height (i.e.,

temporal offset between AMPR and AVAPS). Dropsondes

launched when the ER-2 was not over the ocean were not

considered. When comparing AMPR and AVAPS, all AMPR

scans during the time period of approximately 5min before the

time of interest (i.e., the time of AVAPS minimum height or

the time AMPR passed over the AVAPS minimum height

location) to 5min after the time of interest were used to cal-

culate an average AMPR-derivedWV andWS. In cases where

the ER-2 was over land or turning when AVAPS reached

minimum height, AMPR scans during the time period from 15

to 5min before AVAPS minimum height were used instead.

These 10-min periods were selected to provide larger-scale

averages of WV andWS around the time of interest to account

for spatial and temporal offsets between the two datasets. The

dates, times, and locations of all dropsondes analyzed are

shown in Table 1. MedAD [Eq. (9)] was used to compare WV

and WS from AVAPS and AMPR data, with AVAPS used as

the ‘‘observed’’ quantity.MedADwas utilized in this study due

to the small AVAPS sample size, as will be discussed in

section 5. Since outliers will heavily influence RMSD in a

small sample size, MedAD better represents the calculated

AMPR–AVAPS deviations.

FIG. 7. Plots of the mean bias in observed AMPR Tb from four ER-2 flights: 23 Nov (black lines), 24 Nov (red

lines), 10 Dec (green lines), and 13 Dec 2015 (blue lines) compared to the simulated AMPR Tb values from the

GDAS profiles throughout each flight. The four panels illustrate the mean Tb bias at (top left) 10.7-, (top right)

19.35-, (bottom left) 37.1-, and (bottom right) 85.5-GHz frequencies for the four case study dates. The x axes denote

AMPR’s scan angle, with negative (positive) values located on the left (right) half of the scan swath, and 08 cor-
responding to nadir. Within each plot, the solid lines represent the deconvolved vertically polarized Tb at that

frequency, while the dashed lines represent the deconvolved horizontally polarized Tb values. All Tb biases were

calculated using Eq. (10). Adapted from Biswas et al. (2017).
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5. Retrieval equations applied to OLYMPEX/
RADEX cases

This section illustrates the utility of Eqs. (6)–(8) when applied

to AMPR data from OLYMPEX/RADEX. Comparisons with

independent methods (i.e., 1DVAR and AVAPS) are pre-

sented. For brevity, in-depth examples will be shown for two

OLYMPEX/RADEX cases, but the performances of Eqs. (6)–

(8) compared to 1DVAR and AVAPS will be summarized for

all four dates examined.

a. Case 1: 24 November 2015

The 24 November 2015 case featured a relatively high-

amplitude positively tilted trough axis over the study region,

with 1000-hPa geopotential heights as low as 30m within the

low pressure center that propagated through the study region

less than 6 h before the ER-2 flight [University of Wyoming

(UWYO); UWYO 2019]. Deconvolved horizontally polarized

AMPR Tb from a portion of the flight can be found in Fig. 9,

during which some weak precipitation can be observed (e.g.,

around 2020–2033 UTC), allowing for equation testing in clear

air and weak precipitation. To further support the inference of

precipitation, data from the ground-based NASA S-band dual-

polarimetric (NPOL) radar (Wolff et al. 2017) were examined.

Two NPOL range–height indicator (RHI) scans through the

region of precipitation sampled by AMPR around 2020–

2033 UTC are presented in Fig. 10, which were created using

the Python ARM Radar Toolkit (Helmus and Collis 2016).

FIG. 8. As in Fig. 7, except the Tb biases caused by cross-polarization fraction (h), reflector-normal angle (u),

polarization-rotation angle (c), and the scan angle of the antenna (f) in Eq. (4) have been removed from the

calculated differences in observed and simulated Tb in Eq. (10). Adapted from Biswas et al. (2017).

TABLE 1. The date of each AVAPS dropsonde analyzed in this study, the time the dropsonde reached its minimum (min) recorded

height, the latitude and longitude (lat, lon) location of the dropsonde at its minimum recorded height, the (lat, lon) location of AMPR at

the time the dropsonde reached its min height, and the time AMPR passed over the AVAPSmin height (lat, lon) location. An asterisk in

the fourth column indicates that the listed (lat, lon) representsAMPR’s location 10min beforeAVAPS reachedmin height in cases where

AMPR was over land at the actual time of AVAPS min height.

Date

Time of AVAPS min

height (UTC)

AVAPS (lat, lon)

at min height (8)
AMPR (lat, lon)

at AVAPS min height (8)
Time AMPR reached

AVAPS min height location (UTC)

23 Nov 2015 1741:13 47.2021, 2126.639 47.7750, 2126.151 1757:53

23 Nov 2015 1921:08 48.1935, 2125.960 47.5564, 2125.057 1702:43

23 Nov 2015 1936:25 47.6687, 2124.999 48.0426, 2125.933 1942:25

23 Nov 2015 1948:48 48.1808, 2125.908 47.9237, 2125.549* 1906:53

24 Nov 2015 1803:57 47.1599, 2125.640 46.6466, 2126.472 2036:05

24 Nov 2015 1813:57 46.8343, 2126.884 47.0178, 2126.447 1801:19

10 Dec 2015 1734:17 46.8752, 2125.143 47.0766, 2124.946* 1829:58

10 Dec 2015 1841:48 46.8564, 2125.194 47.0697, 2124.961* 1721:56

13 Dec 2015 1721:08 47.7733, 2125.627 47.5862, 2125.275* 1751:36
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Regions of equivalent radar reflectivity factor (ZH) . 30 dBZ

can be seen at the lowest elevation angles of both RHI scans,

especially at 2248 azimuth, which are indicative of moderate

rainfall rates at S band (e.g., Straka et al. 2000).

Using the 24 November data in Fig. 9, CLW, WV, and WS

calculated via Eqs. (6)–(8), respectively, can be found in

Fig. 11. From Fig. 11, it can be seen further that weak precip-

itation was present among clear air, such as 2031 UTC when

CLWandWV increased to roughly 0.5 and 20mm, respectively.

However, in most pixels, CLW and WV were less than 0.5 and

20mm, respectively. WS was slightly less uniform, ranging

from near 0 to 15m s21 throughout Fig. 11. For the same flight

portion, 1DVAR retrievals of CLW, WV, and WS can also be

seen in Fig. 11. Based on Fig. 11, both retrieval methods

yielded similar CLW and WV. As discussed below, wind

speeds obtained with 1DVAR were a few meters per second

higher than those obtained via Eq. (8), especially around 1930–

2000 UTC, likely owing to differences in how each method

performs its retrievals (i.e., multiple linear regression vs in-

version). In addition, some pixels were masked by 1DVAR but

unmasked for the new retrieval equations; this may have been

caused by regions of supercooled cloud water collocated with

snow (i.e., precipitation-size ice crystal aggregates), which are

not accounted for in 1DVAR, causing 1DVAR to not reach

convergence on a solution for these pixels. However, both

methods yielded nearly the same CLW and WV and similar

WS across these AMPR scans, including capturing the slant-

wise WS gradients around 2005–2017 UTC, indicating good

agreement and their ability to perform these retrievals. In addi-

tion, someminor cross-track stripe artifacts may be seen in Fig. 11

FIG. 9. Deconvolved horizontally polarized AMPR brightness temperatures at the frequencies (top) 10.7, (second from top) 19.35, (middle)

37.1, and (second from bottom) 85.5GHz during portions of the ER-2 flights on (left) 24 Nov and (right) 13Dec 2015. AMPR scan positions are

shown on the y axis in the top four rows for each date, with scan position 25 corresponding to nadir. (bottom) Aircraft roll angle for each date.

FIG. 10. Range–height indicator (RHI) scans of equivalent radar reflectivity factor (ZH)

measured by the NPOL radar at 2022 UTC 24 Nov 2015. RHI scans along azimuth angles (top)

2248 and (bottom) 2278.
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(and in the next case presented below), but these apparent EIA

effects are largely within expected uncertainties at a 95% confi-

dence interval for the new retrieval equations and 1DVAR, as

shown in Fig. S1 in the online supplemental material.

To further examine CLW, WV, and WS retrieved using

Eqs. (6)–(8) compared to 1DVAR, 2D histograms were made

between the two methods for all quality-controlled AMPR

pixels on 24 November. These histograms are presented in

Fig. 12, where it can be seen that a majority of CLW and WV

data points fall near their respective 1-to-1 ratio lines, indi-

cating good agreement. Most WS data points are shifted above

the 1-to-1 ratio line, indicating that Eq. (8)’s WS values were

generally lower than those calculated via 1DVAR, likely due

to use of multiple linear regression rather than inversion. As

will be discussed further for the next case, breakpoints along

the WS y axis in Fig. 12 (e.g., at 15m s21) were also likely

caused by pixels where 1DVAR’s solution remained close to

the a priori value due to the presence of precipitation.

To summarize Eqs. (6)–(8) compared to 1DVAR, RMSD

and MedAD values were calculated for all quality-controlled

AMPR pixels from the four OLYMPEX/RADEX cases, as

seen in Table 2; 24 November had CLW, WV, and WS RMSD

values of approximately 3.78 3 1022 mm, 1.63 mm, and

1.69m s21, respectively, and MedAD values of approximately

1.83 3 1022mm, 1.03mm, and 0.76m s21, respectively. The

relatively low RMSD and MedAD values match the good

agreement between the two methods in Fig. 12, especially for

CLW. These results indicate that geophysical values calculated

via Eqs. (6)–(8) correlate well with 1DVAR, which matches

the results ofWentz (1997) and suggests that both methods can

be useful in these retrievals.

Next, for comparison with in situ observations, WV and WS

calculated via Eqs. (7) and (8) were compared with values

calculated usingAVAPS dropsondes from the same case dates.

As described in section 4, 10-m AVAPS wind speed was cal-

culated using Eqs. (13) or (14) and AVAPS water vapor was

calculated using Eq. (15). The differences between AVAPS

and AMPR wind speed and water vapor around the time

AVAPS reached minimum height and around the time AMPR

passed over the AVAPS minimum height location can be

found in Fig. 13. From the left plots in Fig. 13, the wind speed

difference was less than 1m s21 for both available dropsondes

on 24 November, indicating excellent agreement between

AMPR-derived WS and in situ observations. AMPR and

AVAPS were approximately 40 and 80 km apart at the mini-

mum height times, so this agreement indicates similar wind

speeds at the AMPR and AVAPS locations and lack of iso-

lated convection impacting the WS comparisons, as discussed

in the next case. Likewise, the water vapor differences less

than 2.5mm indicate good agreement between AMPR and

AVAPS, which is near the highest precision observed by

Wilheit and Chang (1980) of 1.5mm, and matches the fairly

uniform water vapor seen in Fig. 11. However, the AMPR–

AVAPS spatial offset likely contributed to the differences seen

in Fig. 13, which is a limitation of comparing data from in-

struments on separate aircraft.

From the right plots in Fig. 13, it can be seen further that

AVAPS observations agreed very well with AMPR-derived

values; wind speed differences were less than 0.5m s21 when

AMPR passed over the AVAPS minimum height location for

both 24November dropsondes. This is most trustworthy for the

1759 UTC dropsonde, since AMPR passed over the minimum

height location less than 15min prior. However, the 0.11m s21

difference for the 1749 UTC dropsonde is interesting consid-

ering the time difference greater than 2.5 h, which was the

highest temporal offset in this study. Water vapor agreement

was also strong, with differences of approximately 2mmor less.

As previously noted, these good agreements likely resulted in

part from the large amount of clear-air data minimizing any

contamination from isolated convection. Additionally, despite

the presence of a low pressure center off the coast of Oregon at

1800 UTC, surface pressure gradients over the domain were

FIG. 11. Values of (top) cloud liquid water, (second from top) water vapor, and (second from bottom) 10-mwind speed calculated using (left)

the new geophysical retrieval equations and (right) 1DVAR from the AMPR data on 24 Nov 2015 shown in Fig. 9. (bottom) The ER-2 aircraft

roll angle. For CLW retrievals via the new equation, pixels with CLW, 0mm after applying the Tb bias corrections have been masked.
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relatively low at 1800 UTC (UWYO 2019). This likely con-

tributed to the relatively strong agreements in water vapor and

wind speed despite the spatial and temporal offsets, especially

for the 2.5-h offset for the 1749 UTC dropsonde.

b. Case 2: 13 December 2015

During the 13 December 2015 case, similar to 24 November,

a relatively high-amplitude, positively tilted trough propa-

gated through the study region; however, the low pressure

center was deeper for 13 December, with 1000-hPa geo-

potential heights as low as 290 m at 1200 UTC (UWYO

2019). Horizontally polarized deconvolved Tb during part

of the ER-2 flight can be found in Fig. 9, where scattered

convection is indicated by local maxima in Tb throughout

the flight path. This contrasts the light precipitation on

24 November and allowed for the retrievals to be tested within

stronger convection.

CLW, WV, and WS retrieved using Eqs. (6)–(8) and the

13 December data in Fig. 9 are presented in Fig. 14, where

the Tb maxima are reflected by local CLW and WVmaxima.

The 13 December WS pattern was more complex than

24 November, indicated by local WS maxima up to 20m s21;

the higher mean background wind on 13 December compared

to 24 November may have resulted from the more intense low

pressure center and associated slightly higher pressure gradient

on 13 December and the passage of a cold front on this day

[Weather Prediction Center (WPC); WPC 2019]. The slight

bow-like appearance to some local WS maxima (e.g., around

1940 UTC) is interesting. Given the location of this WS max-

imum near the local CLW and WV maxima, it is possible that

FIG. 12. Two-dimensional histograms comparing (top) cloud liquid water, (middle) water vapor, and (bottom)

10-m wind speed calculated using the new retrieval equations (x axes) and 1DVAR (y axes) for all quality-

controlled AMPR pixels during the ER-2 flights on (left) 24 Nov and (right) 13 Dec 2015. The red dashed line in

each plot indicates a one-to-one ratio between the two retrieval methods.
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this feature, as well as other small-scaleWS variability, is a gust

front associated with a convective storm. This is noteworthy as

it indicates the potential to estimate gust-front wind speeds

using AMPR data and Eq. (8).

To demonstrate that these high-WS areas are not strictly due

to rain impact on the AMPR signal, CLW data were masked

for CLW . 0.01mm, as seen in Fig. 15. Since the WS maxima

fall outside areas where CLW is greater than 0.01mm, they

avoid potential rain contamination. Although all AMPR data

are sampled at a 0.6-km cross-track resolution, the raw reso-

lution of the 10.7- and 19.35-GHz data is 2.8 km. To avoid

potential influences of CLW on WS estimations (e.g., O’Dell

et al. 2008), all WS data within65 pixels, or roughly 3 km, of a

CLW . 0.01mm observation were masked in the along-track

and across-track dimensions. These results are presented in the

second panel of Fig. 15, where it can be seen that WS maxima

fall outside of these potentially cloud-affected pixels, further

suggesting that these WS signatures are not the result of a data

artifact. In addition, NPOL RHIs through convective storms

around the same time as these AMPR analyses are presented

in Fig. 16, wherein the radial velocity (Vr) values within the

precipitating storms stand out against the background wind

field and support the inference of gust fronts. Gust-front

analysis with AMPR data needs further examination in fu-

ture work, but the potential exists for these analyses to be

performed.

Retrieved CLW,WV, andWS via 1DVAR on 13 December

are also shown in Fig. 14, where it can be seen that 1DVAR did

not yield output for several pixels where Tb values were rela-

tively high. The precipitation implied by these high Tb values,

TABLE 2. An overview of the median RMSD values between 1DVAR and the new retrieval equations for CLW,WV, andWS (second

through fourth columns, respectively) during each of the four OLYMPEX/RADEX case dates analyzed in this study, as well as the

median MedAD values between these retrieval methods for CLW, WV, and WS (fifth through seventh columns, respectively) and the

correlation coefficient (CC) values between the two retrieval methods for CLW, WV, and WS (eighth through tenth columns, respec-

tively). The median value for each statistic calculated across the four case dates is presented in the bottom row. All values were calculated

across all quality-controlled AMPR data for each case.

Date

CLW

RMSD (mm)

WV

RMSD (mm)

WS

RMSD (m s21)

CLW

MedAD (mm)

WV

MedAD (mm)

WS

MedAD (m s21)

CLW

CC

WV

CC

WS

CC

23 Nov 2015 1.01 3 1021 2.47 2.64 2.72 3 1022 1.40 2.13 0.76 0.50 0.85

24 Nov 2015 3.78 3 1022 1.63 1.69 1.83 3 1022 1.03 0.76 0.89 0.77 0.86

10 Dec 2015 2.55 3 1021 2.26 4.68 5.67 3 1022 1.26 4.12 0.76 0.81 20.27

13 Dec 2015 9.81 3 1022 1.73 2.06 3.03 3 1022 1.02 1.51 0.76 0.66 0.23

Median 9.95 3 1022 2.00 2.35 2.88 3 1022 1.14 1.82 0.76 0.72 0.54

FIG. 13. Absolute values of the differences between (top) 10-m wind speed calculated using the new retrieval equations and calculated

fromAVAPS data for the four case study dates: 23 Nov (red bars), 24 Nov (green bars), 10 Dec (blue bars), and 13Dec 2015 (purple bars).

(middle) Absolute values of the differences between water vapor via the same calculations. These calculations were performed at two

times: (left) at the time the AVAPS dropsonde reached its minimum recorded height and (right) at the time AMPR passed over the

location where AVAPS recorded its minimum height. (bottom left) Spatial offsets between AMPR and AVAPS at the time AVAPS

reached its minimum recorded height. (bottom right) Temporal offsets between when AVAPS reached its minimum recorded height and

when AMPR passed over the location where AVAPS recorded its minimum height; these spatial and temporal offsets are based on the

values seen in Table 1. The x axis in each plot represents the launch times of the respective AVAPS dropsondes. Wind speed and water

vapor values calculated using AMPR data were averaged over a time period of approximately 10min, as described in the main text.
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especially at 10.7 and 19.35GHz, is not accounted for in

1DVAR’s forward model; 1DVAR’s cost function increased

nearer the Tb maxima (not shown), and eventually 1DVAR

failed to reach a solution within theseTbmaxima. This resulted in

1DVAR’sWS reverting back to the GEOS-5 a priori throughout

Fig. 14, especially near the Tb maxima, which, as seen in Fig. 12

and discussed below, resulted in 1DVAR not capturing the

smaller-scale WS variability that was captured by Eq. (8).

However, background wind speed was similar between the two

methods. Mean WV was also similar between 1DVAR and

Eq. (7), and local CLWmaximawere captured by bothmethods.

These results indicate fair agreement between both

methods, but to further examine the correlation between

1DVAR and Eqs. (6)–(8), 2D histograms across all quality-

controlled AMPR pixels on 13 December are shown in Fig. 12.

From Fig. 12, the methods agreed well for CLW and WV for

most pixels; however, the WS pattern is interesting. WS less

than 15m s21 saw similar behavior as on 24 November, where

Eq. (8) yielded values a few m s21 less than 1DVAR; however,

for WS greater than the artifact around 15m s21 on the y axis,

Eq. (8) yielded higherWS (by 10m s21 in some cases) for many

pixels. This is reflected in a low correlation coefficient of 0.23

between Eq. (8) and 1DVAR WS on 13 December, shown in

Table 2. A significant reason for this difference arises from

Eq. (8) attempting to retrieve even in pixels where precipita-

tion is present, whereas 1DVAR typically fails to reach con-

vergence in these pixels and will revert back to its a priori value

in nearby pixels. Wind speeds in the GEOS-5 data nearest the

13 December 2015 flight path were around 15–18m s21 (not

shown). Thus, in pixels where 1DVAR reverted back to its

background values on this day (e.g., around precipitation), the

wind speed values output from 1DVAR were around 15–

18m s21, which seemed to yield the high data concentration

around these values on the y axis in Fig. 12. The retrievals at-

tempted by Eq. (8) near precipitation regions likely contrib-

uted to its higher WS compared to 1DVAR in Fig. 12, in

addition to any differences resulting from use of multiple linear

regression versus 1DVAR’s inversion method.

To evaluate other sources that may contribute to the

breakpoint and data clustering around 15m s21, we performed

several analyses using pixels where 1DVAR reached conver-

gence (not shown) targeting three hypotheses for this behavior:

1) 1DVAR encountered difficulties calculating WS near nadir

due to little difference in the horizontally and vertically po-

larized Tb data; 2) high CLW values (i.e., near, but largely not

within, precipitation) also caused 1DVAR to revert back to the

GEOS-5 a priori wind speeds; and 3) 1DVAR reached con-

vergence on WS values that were different from the a priori

value, but with a cost function (x2) value that was unacceptably

large (i.e., x2 . 10; Duncan and Kummerow 2016), causing

1DVAR to use the a priori wind speeds. For each of these

analyses, different levels of masking were individually applied

to the retrieved WS from 1DVAR and Eq. (8); all data with

EIA , 108, 208, 308, and 408 were masked, as were all pixels

with retrieved CLW . 1 3 1024, 5 3 1024, 1 3 1023, and 5 3
1023mm, and all pixels with a 1DVAR x2 value. 0.5, 1, 5, and

10. In all cases, the data clustering around 15–18m s21 on the

1DVAR axis persisted, as did the 15 m s21 breakpoint.

However, as fewer and fewer pixels nearer the middle of the

scan swath were considered via the increased EIA masking

levels, the WS data points converged on the 1-to-1 ratio line

between the two retrieval methods, indicating greater agree-

ment between the methods, despite the continued breakpoint.

The same phenomenon was observed when applying x2 masks,

with data points converging on the 1-to-1 ratio line more

strongly when masking x2 . 0.5 compared to x2 . 10. This

convergence was not observed for the different levels of CLW

masking. Thus, while masking the AMPR data based on EIA

and 1DVAR’s x2 value indicated improved agreement be-

tween the retrieval methods, they did not fully explain the

15m s21 breakpoint along 1DVAR’s axis or the clustering of

1DVARWS around 15–18m s21. This is especially interesting

for the increased x2 values, as it indicates that, while precipi-

tation influenced 1DVAR’s retrievals, the increases in x2

nearer precipitation did not seem to fully explain the 15m s21

breakpoint.

FIG. 14. As in Fig. 11, but for a portion of the ER-2 flight on 13 Dec 2015.
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Apart from this WS behavior, Eqs. (6)–(8) and 1DVAR

agreed fairly well. This is further reflected in the CLW, WV,

and WS RMSD values of 9.81 3 1022mm, 1.73mm, and

2.06m s21, respectively, in Table 2 and MedAD values of

3.03 3 1022mm, 1.02mm, and 1.51m s21, respectively. These

values agree with the deviations from the 1-to-1 ratio line in

Fig. 12 and indicate fairly good agreement between the re-

trieval methods.

To compare AMPR-derived WV and WS with in situ ob-

servations on 13December, anAVAPS data analysis similar to

24 November was performed. However, only one dropsonde

was available during the ER-2 flight on 13 December.

FIG. 15. (top)A plot of 10-mwind speeds forAMPRpixels where the cloud liquid water was#0.01mm (red color

bar) and cloud liquid water values for AMPR pixels where the cloud liquid water was .0.01mm (blue color bar)

during the portion of the 13Dec 2015 ER-2 flight shown in Fig. 14. (bottom)As in the top panel, except presented in

a geolocated manner. (second from top) Cloud liquid water values (blue color bar) for all pixels within65 pixels in

the cross-track or along-track directions of any pixel with a cloud liquid water value .0.01mm, with wind speed

values (red color bar) plotted for all pixels that did not meet these criteria. (third from top) ER-2 aircraft roll angle

over the same time period.

624 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 38

Unauthenticated | Downloaded 10/18/24 01:21 AM UTC



Comparing AVAPS and AMPR at the time of AVAPS mini-

mum height, seen in Fig. 13, the wind speed and water vapor

differences were roughly 1.93m s21 and 1.36mm, respectively,

which is good agreement despite AMPR being more than

30 km from AVAPS. Examining AMPR’s overpass of the

AVAPS minimum height location, which took place 30min

later as seen in Fig. 13, the wind speed and water vapor dif-

ferences were about 1.54m s21 and 1.01mm, respectively,

which is very good agreement with a relatively low temporal

offset. In general, WV andWS from Eqs. (7) and (8) compared

well with AVAPS on 13 December, which likely resulted from

surface pressure gradients that were only slightly greater than

those on 24 November (UWYO 2019).

c. Summary of all case dates

The overall performances of Eqs. (6)–(8) compared to

1DVAR are indicated by the RMSD and MedAD values in

Table 2. The median MedAD values calculated across the four

cases were 2.883 1022mm, 1.14mm, and 1.82m s21 for CLW,

WV, and WS, respectively, while median RMSD values were

9.95 3 1022mm, 2.00mm, and 2.35m s21, respectively. These

results indicate excellent agreement between the new retrieval

equations and 1DVAR overall. CLW yielded the lowest un-

certainty of all three parameters, as in Wentz (1997), with

RMSD andMedAD values on the same order of magnitude as

observed in Wentz (1997) and Wilheit and Chang (1980). The

WVRMSD of 2.0mm is approximately 0.6mm lower than that

noted in Duncan and Kummerow (2016), but is approximately

0.8mm higher than the RMSD noted in Wentz (1997). In ad-

dition, the overall WS MedAD of 1.82m s21 is 0.18m s21 be-

low the baseline uncertainty of 2.0m s21 noted in past wind

retrieval studies (e.g., Wentz and Meissner 2007; Ruf et al.

2019), while the WS RMSD of 2.35m s21 falls slightly above

this baseline uncertainty. However,WSRMSD increased due to

use of a one-step retrieval equation compared to the two-step

approach used in past studies, such as the RMSD of 1.0–

1.8m s21 noted in Wilheit and Chang (1980). These factors

indicate improvements in geophysical retrievals that are pos-

sible with these new equations when applied to AMPR data. A

notable feature in Table 2 is the relatively high MedAD and

RMSD values for WS on 10 December, which are nearly

double the second-highest values. As with 13December, a high

amount of precipitation was present on 10 December, which

impacted the retrievals due to the differences in how both

methods handle precipitation.

The overall performance of Eqs. (7) and (8) compared to

AVAPS can be found in Fig. 13. The MedAD for WV andWS

calculated across all nine dropsondes was 2.10 mm and

1.15m s21, respectively, at the time AVAPS reached minimum

height, while MedAD at the location of AVAPS minimum

height was 1.80mm and 1.53m s21, respectively. Cases where

AMPR-derived and AVAPS-derived WV and WS differed

FIG. 16. Range–height indicator (RHI) scans of (top left) equivalent radar reflectivity factor (ZH) and (top right)

radial velocity (Vr) measured by the NPOL radar at 1920 UTC 13 Dec 2015 along an azimuth angle of 2108.
(bottom) As in the top panels, but measured along an RHI azimuth angle of 2168.
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considerably (e.g., 1906 and 1921 UTC 23 November) were

influenced by isolated convection (not shown); in some cases,

AMPR was over an isolated convective storm while AVAPS

was dropped away from the storm, thus impactingWV andWS

comparisons at AVAPS minimum height time. Similarly, in

some cases (including the two aforementioned 23 November

dropsondes), a convective storm developed around the

AVAPS minimum height location during the time between

AVAPS reaching minimum height and the ER-2 passing

over that location.

Furthermore, a cold front extended through the center of the

study domain at 1800 UTC 23 November (UWYO 2019),

which likely contributed to the considerable differences in the

dropsondes around 1900 UTC on this day. The surface pres-

sure gradients were relatively low away from the cold front on

23 November, which may have contributed to relatively good

agreements in the 1726 and 1934UTCdropsondes. Conversely,

pressure gradients were significantly higher on 10 December in

association with an intense low pressure center northwest of

Washington (UWYO 2019), which likely contributed to the

differences seen over time for the 1827 UTC dropsonde in

Fig. 13. This suggests that dropsondes with a relatively

high spatial and/or temporal offset on 23 November and

10 December, such as those at 1726, 1906, and 1921 UTC

23 November and 1827 UTC 10 December, may present a less-

reliable comparison for water vapor and wind speed valida-

tions compared to those with a high spatial and/or temporal

offset on 24 November and 13 December. Therefore, the

1934 UTC dropsonde on 23 November and the 1720 UTC

dropsonde on 10 December present the most reliable com-

parisons for these two case dates. These are example limita-

tions of comparing data from instruments flown on different

aircraft.

Despite these temporal and spatial offset issues, both sets of

MedAD indicate that WV and WS from Eqs. (7) and (8)

agreed fairly strongly with AVAPS. Both WS MedAD values

are less than the 2.0m s21 baseline uncertainty noted in Wentz

and Meissner (2007) and Ruf et al. (2019), and are similar to

the WS RMSD of 1.2 and 0.9m s21 reported in Duncan and

Kummerow (2016) and Wentz (1997), respectively. Likewise,

the WVMedAD values are 0.5–0.8mm lower than the 2.6-mm

RMSD noted in Duncan and Kummerow (2016), but are

0.6–0.9 mm higher than the 1.2-mm RMSD presented in

Wentz (1997).

6. Summary and future work

The purpose of this manuscript was to provide an overview

of AMPR’s polarimetric upgrades and calibrations, and to

demonstrate the ability to obtain realistic CLW, WV, and WS

from AMPR data via three new geophysical retrieval equa-

tions. AMPR Tb simulated from NCEP GDAS atmospheric

profiles were used to train the retrieval equations, and their

performances were initially tested against geophysical

data from the GDAS profiles. The new retrieval equations

were then applied to AMPR Tb recorded during four

OLYMPEX/RADEX cases, the results of which were compared

to the same parameters calculated via 1DVAR for the same

AMPR dataset.Mixed-polarizationAMPRTbwere deconvolved

into true horizontally and vertically polarized Tb, and biases in

observed Tb were removed prior to using the new equations

with OLYMPEX/RADEX data. WV and WS calculated via

the new retrieval equations were also compared with in situ

AVAPS dropsonde data.

Comparing retrievals from simulated AMPR Tb against the

GDAS profiles yielded nearly unbiased mean CLW retrieval

error across the range of CLW values examined, with minimal

crosstalk errors apart fromWV greater than 30mm.MeanWV

retrieval error was near 0mm for WV less than 50mm, and

crosstalk errors were around 0mm. Retrieval error for WS

fluctuated from negative values for WS less than 5 and greater

than 15m s21 to positive values forWS between 5 and 15m s21,

though mean error magnitude was less than 1m s21 for WS

between 3 and 19m s21. WS crosstalk errors were nearly un-

biased apart from SST between 08 and 38C, where the mean

error magnitude was still less than 1m s21. Mean retrieval

RMSD for CLW, WV, and WS were 0.11mm, 1.28mm, and

1.11m s21, respectively, while the respective median MedAD

values were 2.26 3 1022mm, 0.22mm, and 0.55m s21.

UsingAMPRTb data collected duringOLYMPEX/RADEX

to calculate the geophysical parameters, there was rela-

tively strong agreement between the new equations and

1DVAR. Both methods were able to retrieve similar values

in clear air, while the new equations attempted to retrieve

in light precipitation on 24 November and in stronger

convection on 13 December, whereas 1DVAR does not

converge on a solution in precipitation regions, leading to

differences in the retrievals around areas of precipitation.

The new WS equation captured small-scale WS variability

on 13 December that may have been associated with gust

fronts, which demonstrates its utility in analyzing smaller-

scale features. Median RMSD for CLW,WV, andWS across

the four cases was 9.95 3 1022 mm, 2.00 mm, and 2.35 m s21,

respectively, while median MedAD was 2.88 3 1022 mm,

1.14 mm, and 1.82 m s21, respectively.

When comparing WV and WS from the new equations with

AVAPS, two approaches were taken: 1) compare both datasets

at the time of AVAPS minimum height, regardless of spatial

offset, and 2) compare both datasets at the location of AVAPS

minimum height, regardless of temporal offset. For the nine

available dropsondes, the WV MedAD was 2.10 and 1.80mm

at the time and location of AVAPS minimum height, respec-

tively, while the respective WS MedAD values were 1.15 and

1.53m s21. These results indicate that the new WV and WS

equations compared well with in situ observations, despite the

spatial and temporal offsets between the instruments and as-

sociated errors resulting from isolated convection and pressure

gradients.

The results herein are promising, but future work must

further analyze the new retrieval equations. One avenue for

future work could expand the analysis ofWS artifacts observed

in some of the 1DVAR data to consider other error sources.

Training an artificial neural network to perform the geo-

physical retrievals would be interesting, given the potential for

deviations in the multiple-linear regression equations where

the assumed relation between the retrieved property and the
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Tb values does not wholly represent their true relation.

Additional OLYMPEX/RADEX cases should be tested and

compared with the results herein, which will be performed as

the entire OLYMPEX/RADEX dataset is reprocessed using

Eqs. (6)–(8). Comparing CLW with in situ data may be chal-

lenging, but would provide useful validation. Testing the

equations on AMPR datasets from other field campaigns, such

as the recent Cloud, Aerosol and Monsoon Processes

Philippines Experiment (CAMP2Ex), where AMPR and

AVAPS were flown on the same aircraft, and Investigation

ofMicrophysics and Precipitation for Atlantic Coast-Threatening

Snowstorms (IMPACTS), will also be beneficial to exam-

ine their performances in other climate regions throughout

the world.
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