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Differences in the spectral characteristics of the different Planetscope sensor generations

introduce inconsistencies in reflectance time series
-Planetscope-0 blue typically 25% greater than Planetscope-1 surface reflectance
-Planetscope-0 red, green and NIR typically 5%, 14%, 13% smaller than Planetscope-1 surface reflectance
-Planetscope-0 atmospherically corrected NDVI typically 9% smaller than Planetscope-1

Spectral transformation functions developed & demonstrated so can simply adjust surface
reflectance and NDVI between the Planetscope-0 and Planetscope-1 sensors to each other
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Sharpen Sentinel-2 10 m and 20 m data with Planetscope to
generate 3 m surface reflectance for the Sentinel-2 bands:

Potential next research steps to
provide consistent 3 m visible, red-
edge, NIR, SWIR daily time series:

e Fit sinusoidal harmonic model to NASA
Harmonized Landsat Sentinel-2 (HLS) 30 m time
series

« Sharpen harmonic fitted 30 m time series to 3 m

1 year of HLS &1 month of Planetscope

o
~

red green blue NIR, Red edge, SIR
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Key publications:

Huang, H. and Roy, D.P., 2020, Characterization of Planetscope-0
Planetscope-1 surface reflectance and normalized difference
vegetation index continuity, Science of Remote Sensing, In Review.

Li, Z., Zhang, H.K., Roy, D.P,, Yan, L., Huang, H., 2020, Sharpening the
Sentinel-2 10 and 20 m bands to Planetscope-0 3 m resolution, Remote
Sensing, 12, 2406.

Roy, D.P. and Yan, L., 2020, Robust Landsat-based crop time series 0 50 100 150 200 250 300 350
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Evaluation of Spire GNSS RO data for
Tropopause and PBL Detections

Zhen Zeng",William Schreiner, Jan Weiss
COSMIC Program, UCAR

“zzeng@ucar.edu

Spire GNSS RO Dataset

Number of ROs

Level | data were provided by Spire.
RO atmospheric profiles are processed by CDAAC using standard data

processing package.
Data period: 2018.266-344 (Sep. 23 — Dec. 10)
GNSS constellations: GPS, GLONASS
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Statistics of Spire RO data processing metrics &
Statistical comparison of Spire RO retrievals against model forecast

Statistics: SNR & BA STDV
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Spire SNR is about half of the
one from COSMIC.
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* Spire retrievals processed by CDAAC show
reasonable agreement with model forecast.



Scientific evaluation of Spire GNSS RO data

Tropical cold-point tropopause (CPT) height and temperature
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Temporal variability of
zonal-mean CPT from Spire
agrees well with the one
derived from other RO
missions. Spire RO is
suitable for studying the fine

structures and seasonal
variabilities of CPT.
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The PBL structures derived from Spire RO data are consistent with previous studies. Spire RO

can be used to detect the PBL height.



Evaluation of GNSS Radio Occultation observations
in Atmospheric Rivers DR ANOCRA Y

Morphed composite: 2015-02-06 12:00:00 UTC v sambicee
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Intercomparison between several different RO constellations as
well as dropsondes from AR Reconnaissance versus reanalysis.
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Data was collected over 3 winter seasons during 29 Intensive Observing Periods (IOPs)



GNSS RO has great potential to define the structure of Atmospheric
Rivers (ARs), but care is required in processing.

Example of Individual profile Full statistics from

outside of an AR from Spire outside AR
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Systematic error due to unrealistic smoothing of observed
profile in lower troposphere. These sharp contrasts are
important features of the structure of the extra-tropics that

should not be removed.
mjmurphy@ucsd.edu
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core of an AR leads to deeper penetration of RO.



Prior to using CICERO data for reliable weather prediction,
its performance assessment is necessary

Miniature version of
the conventional
RO receivers

o &

. RO Signals

RO Receiver : IGOR S, . RO Receiver : CION

'Size | 20 x 24 x 10.5 cm. s S Size | 30 x 10 x6cm
MaSS 4-.6 kg e . ] : j--'.-.....-------- 2 | MaSS 1.2 kg




The cubeSat constellation CICERO can provide RO measurements
comparable to the COSMIC | mission

Number of occultation events Penetration capability
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Significance of the Research

Demonstrate the capability of
cubesat sized RO LEO

High quality GNSS RO data for

- oo

‘ / reliable weather fore’qast

A é“'l!?'
N

ROLEO
CubeSat

. Understand
the effects of
CICERO receiver
characteristics on
the RO quality

Capability

Reduction in time and cost
for RO system development

@ m S S :
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Contact Information: 'hyeyeonchahg@kaist.ae.kr (cosmbshy%@gmail.com)



temperature (C)

TJCSDA, Boulder, CO
2NOAA/NWS, College Park, MD,
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SUMmary =

Evaluation GeoOptics Spire

Neutral Noise and bias is comparable to C1 and K5. | Noise and bias is slightly higher than C1 and K5,
Atmosphere Error assessment is within range of other | especially at high altitudes. Error assessment is
Products governmental RO platforms. within range of other governmental RO platforms.
Comparable to government assets recently Comparable to government assets recently
NWP Impact
evaluated, such as C1. evaluated, such as C1.
Useful for space weather products. ,
lonospheric o ) . Noisy, but adequate for space weather products.
Scintillation data could improve situational ) ,
Products Electron density profiles may also be useful.
awareness.
Polar orbits provide global coverage and Polar orbits provide global coverage and
Geographical , ) ) )
Coverage complement C2, but local-time coverage is complement C2, but local-time coverage is
limited. limited.
Support for
P':pbl Responsive to all requests and flexible on Responsive to all requests and flexible on
oblem
changing requirements. changing requirements.
Resolution BIng req BINg req

Did not sign up for near-real-time deliveries| Did not sign up for near-real-time deliveries in
in Round 2. Round 2.

F. Vandenberghe, JCSDA
vandenb@ucar.edu

Delivery Latency




AGU 2020

Ute Herzfeld, Matthew Lawson, Thomas Trantow, Tasha Markley, Alfredo de la Pena Gonzalez, Adam Hayes and Jack Hessburg
Geomathematics, Remote Sensing and Cryospheric Sciences Laboratory, ECEE, University of Colorado at Boulder

Bering Glacier, Alaska, Surge 2011 Jakobshavn Isbrae [Sentinel-2]

i Eicrersn PR Negribreen surge crevasses w water [DDA-ice-2]

SkySat validation of DDA-ice algorithm applied to ICESat-2 ATLAS data
Herzfeld et al., Science of Remote Sensing, 2020 (in press) and GRL (2020 in prep.)

Work on SmallSat assessment supported by NASA Commercial SmallSat Data Acquisition Program (CSDAP), work on ICESat-2 algorithm development, validation and science applications supported by NASA Earth Sciences and
the ICESat-2 Project. research on Negribreen Surge supported by NSF Arctic Natural Sciences (ANS) and NASA. Research on image classification supported by NSF Computation for Sustained Scientific Innovation (CSSI) (Office
of Advanced Computing) and ANS.



Field Team 2019
Collection of airborne altimeter and GPS data
NPI Helicopter support

SkySat Image 2019-Aug-18
Special Acquisition

Underflights of near-time ICESat-2 tracks (August 2019)
Flight 1, 2019-Aug-12; Flight 2: 2019-Aug-13
Landsat-8, 2019-08-05

Final Ground Estimate (Pass 0, Segment 23) : Density-Dimension Algorithm
for ICESat-2 (DDA-ice)

Ground Estimate Pass 0

Negribreen ULS Data August 2019

E3s oy h*quy\u\l'f“lv/‘
I

Information gain from DDA-ice
compared to the official ice-surface
Herzfeld et al, SRS 2020 (in press) height product, ATL06
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(1) The Density-Dimension Algorithm family for ICESat-2 laser
altimetry: Surface heights, clouds, aerosols [NASA ICESat-2 Science
Team Project]

(2) The Connectionist-Geostatistical Classification framework for
satellite image analysis [NSF OAC Project]

Integration of (1) and (2) for combined analysis of altimetry and
satellite imagery as a means to advance (cryospheric) sciences

> Growing a community of users

> Early adopters of our algorithm family

> github, doxygen and all that

> Experiments on the cloud

> In-person workshops and online-courses

> Open-access algorithm publications and online documentation

> Generalizations: Other disciplines and applications/ applied sciences




Motivation

Fatalities from rainfall triggered landslides (2007-2017)

.

*
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Reported Fatalities
0 @1-10 ®11-25 26-50 51-100

Urgent need of
developing
methods to
rapidly
generate
landslide
Inventories.
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summary

e SALaD is good for rapid response.

* Access to high resolution data through Commercial Smallsat Data
Acquisition program is invaluable for advancing landslide research and
rapid response capabilities.

Location: Queja, Guatemala

Event: Hurricane ETA, 2020

Number of landslides mapped: 57
Source: Planet (3m) and Sentinel-2 (10 m)
Date: 11/05/2020

Contact details:
Pukar Amatya
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