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ESE- RFC Template 

1 Status of this Memo 
This memo provides information to the NASA Earth Science (ESE) community.   This memo 
does not specify an ESE standard of any kind.  Distribution of this memo is unlimited. 

2 Change Explanation 

This RFC does not update or change a previous RFC. 

3 Copyright Notice 

Copyright © NASA (2005).  All Rights Reserved. 

4 Abstract 

This document provides information about the Backtrack Orbit Search Algorithm (BOSA), 
including appropriate use and details of a typical implementation.   
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6 Introduction 
Orbit searching is by far the most accurate way to search for level 0-2 orbital swath data 

covering a specified area of interest. The idea behind backtrack orbit search is that while spatial 
search of swath data is difficult in general, Earth Science swath data has a number of 
characteristics that make the task a lot easier.  Remotely sensed data is valuable to Earth 
scientists because it is frequent, regular, and global.  For the purposes of doing Earth Science, 
scientists have an interest in keeping the data as consistent as possible.  Among other things, that 
means they want the sensor to have a constant field of view. An easy way to accomplish that is to 
put the satellite in a circular orbit.  For this reason (and others), all Earth Science satellites are in 
a circular orbit. 

The Backtrack Orbit Search Algorithm exploits this fact to greatly simplify the orbit model by 
just modeling an orbit as a great circle under which the Earth rotates.  The simplicity of the 
model allows backtrack to be more efficient than orbit propagator methods, which are designed 
to work with any satellite.  The simplified orbit model relies on only three parameters: 
inclination, period, and swath width.  The accuracy of the method depends on the stability of 
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those three parameters over the life of the sensor, but there is also a scientific interest in keeping 
those parameters stable, so they generally stay within reason or the data aren’t useful. 
As the name implies, backtrack works by tracing the orbit backwards.  Backtrack starts with the 
area of interest and answers the question “In order for the sensor to have seen this area, where 
must the satellite have crossed the equator?”  There is no time dependence, so the speed of the 
algorithm is independent of the time range searched.  There is no cumulative error because 
backtrack backs up at most one orbit.  There is no performance hit from using a lookup table 
because backtrack calculates the equatorial crossing range, and the subsequent search is a simple, 
fast, Boolean search on that crossing range. 

This document contains detailed descriptions of the general algorithm, a number of special cases, 
and a number of variations.  To augment the descriptions we have also included a worked 
example and the java code for a working implementation as appendices. 
 

7 Definitions: 
The heading of the satellite as it crosses the equator on the ascending pass is the inclination.  

The angular distance from the pole to the satellite as it passes closest to the pole is the 
declination.  This is (inclination - 90).  

The amount of time the satellite takes to complete one orbit is the period.  
The width of the field of view of the sensor is the swath width.  

The northernmost point achieved by a given orbit is the northern inflection point.  This is the 
point at which the orbit goes from ascending to descending. Similarly the southernmost point 
achieved by a given orbit is the southern inflection point, the point where the orbit goes from 
descending to ascending. 

Figure 3. Backtrack uses a simplified orbit model to calculate the equatorial crossings for orbits 
that pass over the area of interest on the ascending (right) and descending (center) passes.  The 
result (right) is a simple, time independent, query. 

select distinct file_ID, start_date, data_set, ascending_crossing  
from inventory where data_set like "AVHRR_LAC" and  
start_date >= 19800101 and end_date <= 20000218 and   
(ascending_crossing between -80.0 and -64.0)  or  
(ascending_crossing between 88.0 and 106.0)  )  

106E 88
E 

64W 80W 
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Figure 1: An example orbit illustrating the minimum and maximum latitudes covered by a swath at the 
inflection point.  In this case the swath covers the pole so the right edge is on the other side of the pole.  We 
use circular latitude for the maximum to indicate this. 

The northernmost latitude achieved by an orbit, the latitude of the northern inflection point, is the 
inflection latitude.  This is (90 - declination).  
The southernmost latitude covered by a swath, when the satellite is at the northern inflection 
point, is the minimum inflection latitude.  It is the latitude of the southernmost swath edge 
when the satellite is at the point of inflection.  

The northernmost latitude covered by a swath, when the satellite is at the northern inflection 
point, is the maximum inflection latitude.  It is the latitude of the northernmost swath edge 
when the satellite is at the point of inflection.  We make this a circular latitude since it could be 
greater than 90 if the swath covers the pole.  So max_inflection_lat = (inflection_lat + 
(inflection_lat -min_inflection_lat)).  

 
Figure 2: Some sensors never see an area around the pole, which is defined by the maximum coverage 

latitude (left).  Other sensors may see a given area around the pole on every pass, which is defined by the total 
coverage latitude (right). 
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The latitude above which all orbits cover the area is the total coverage latitude (shown in the 
left hand image above). Not all sensors have this.  Sensors on satellites with a low inclination 
will never cover the poles, and even some sensors on polar orbiting satellites may have too 
narrow a swath width to cover the pole.  But sensors with a wide enough swath, on polar orbiting 
satellites may cover the pole, and some region around the pole, on every pass.  That region is 
defined by the total coverage latitude; total_coverage_lat = min (90, (180 - max_inflection_lat)  
The latitude above which no orbits cover the area is the maximum coverage latitude (shown in 
the right hand image above). Not all sensors have this.  Some sensors with a wide enough swath, 
on a polar orbiting satellite, may always cover the pole.  But sensors with too narrow a swath, or 
on satellites with a low inclination, may never see the pole and never see some region around the 
pole.  That region is defined by the maximum coverage latitude; max_coverage_lat = min (90, 
max_inflection_lat) 
Circular latitude is a convenient way to encapsulate the latitude and direction of the satellite in 
a single number.  Ideally the circular latitude would simply be the angular distance from the 
ascending equatorial crossing, but for our purposes it is more convenient to correlate the circular 
latitude to the actual latitude of the satellite along-track.  This creates a (pseudo-) circular latitude 
that is a discontinuous function.  For example: for the swath pictured in figure 1 above the 
circular latitudes along track would be [0, 82] ascending, [98, 262] descending, and [278, 360] 
ascending.   Our use of circular latitudes in describing partial orbits is discussed further in 
section 12 below. 
 

8 Algorithm Description: 

This section attempts to describe the backtrack algorithm in sufficient detail to enable a 
reasonably skilled programmer to implement it.  While the Backtrack algorithm uses a simplified 
orbit model it is still not simple.  As the algorithm uses concepts and techniques from Spherical 
Trigonometry, 3-D Cartesian Geometry, ordinary Euclidean Geometry, and basic Algebra a 
strong math background is highly recommended. 
Backtrack was originally developed for data from DMSP satellites.  The DMSP satellites are in a 
sun-synchronous polar orbit.  The algorithm works equally well for satellites that are in 
shallower orbits and we have attempted to generalize the description, but you may see some of 
Backtrack’s heritage persisting in the description below.   
The description focuses on the most basic case of finding crossings for orbits during which the 
sensor would see the area of interest on the ascending pass.   The differences in the algorithm 
required for finding descending data are covered in section 9, and a number of special cases and 
variations are covered in sections 10-12.  All of the cases assume a retrograde, circular orbit.  We 
can think of no reason the algorithm wouldn’t also work for satellites in a prograde circular orbit, 
but we have had no opportunity to work with data from such a satellite. 
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A short statement of the problem is: Given an area of interest and the period, inclination, and 
swath width of an instrument on a satellite in a retrograde circular orbit; find all ascending 
equatorial crossings of the satellite for all orbits of the satellite during which the instrument 
recorded data over the point of interest on the ascending pass. 
 

8.1 Break the perimeter into sample points. 
The algorithm works on points so given an area create a set of points along the perimeter that are 
less than swath width/2 apart.  The points need to be close enough so the resulting equator 
crossing ranges will overlap and hence be mergable into one searchable crossing range.  Only 
perimeter points are needed because that's where the extremes of the area are.  I.e. any swath that 
includes an interior point of the area must also include a perimeter point.  Steps 8.2-8.7 are 
repeated for each sample point then the crossing ranges are merged prior to the search step. 
 

8.2 Find the orbit with nadir crossing the given point.  
Let the point of interest be (latp, lonp).  We seek the ascending equator crossing point of nadir at 
(0, lonn )  
First consider a static (non-rotating) sphere.  We can approximate the orbital path of the satellite 
by connecting (0, lonn) to (latp, lonp) with a great circle. This great circle also contains the 
inflection point (latinf, loninf). Using arcs along the meridian of the point of interest, the great 
circle orbit, the equator, and the meridian from the north pole to the inflection point we can 
create two spherical triangles.  We do not know the longitude of the inflection point but we do 
know the latitude because we know the inclination of the orbit.  That latitude is (90-declination) 
where declination = (inclination-90) so we know the length of the great circle arc along loninf that 
connects the inflection point to the North Pole. 
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Figure 3: Spherical triangles used to calculate the ascending crossing of a satellite that sees the point of 
interest on the ascending pass. 

 
Given a spherical triangle with sides alpha, beta, and gamma and opposite interior angles Alpha, 
Beta, and Gamma. the Law of sines for spherical triangles is:  
sin(alpha)/sin(Alpha) = sin(beta)/sin(Beta) = sin(gamma)/sin(Gamma)  

Let theta be the angle between the meridian of the point of interest and the orbital great circle.  
Then by the Law of sines  

sin(90 - latinf) / sin(theta) = sin(90 - latp) / sin(90)   so  
sin(theta) = sin(90 - latinf) / sin(90 - latp )  

Similarly  
sin(lonn - lonp)/ sin(theta) = sin(latp ) / sin(latinf)  so  

sin(lonn - lonp) = sin(theta) *sin(latp ) / sin(latinf)  so  
 lonn = asin(sin(theta) *sin(latp) / sin(latinf ))  + lonp  
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 Similarly we can find the length of the arc between (0, lonn ) and (latp, lonp)  
 sin(Larc) / sin(90) = sin(latp) / sin(latinf )  so  

 Larc = asin(sin(latp) / sin(latinf ))  
 

The true equatorial crossing can be found by adjusting for the rotation of the Earth during the 
time it takes the satellite to travel the distance of Larc.  

RealLonn = lonn + [ period * Larc* ROTATION_RATE / circumference]  
Eventually we'll want to adjust everything by that amount - but for now we still need to use the 
static Earth.  
    

8.3 Convert to Cartesian 3-space and find the orbital plane.  
 

These two points (latp, lonp) and (latn , lonn) lie on the Great Circle that is the orbit.  Combined 
with the origin they define a plane.  

 
 Convert to Cartesian  

 x = r * cos(lon) * cos(lat);  
 y = r * sin(lon) * cos(lat);  

 z = r * sin(lat);  
 

 The plane of the Great Circle is defined by:  
 (ypzn - ynzp)x - (xpzn - xnzp)y + (xpyn - xnyp)z = 0  

 
 Let  

 
 a = (ypzn - ynzp)  

 b =  -(xpzn - xnzp )  
 c = (xpyn - xnyp)  
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 So the plane of the orbit on a static sphere is: ax + by + cz = 0  

 

8.4 Find points on the swath edges:  

Given the swath width, find points (latedge, lonedge) on each edge of the swath by going half that 
distance perpendicular to the ground track.  This only works for downward looking sensors.  
Forward looking and backward looking sensors can also use this method by creating a virtual 
satellite that is downward looking.  For side viewing sensors simply dividing the swath width in 
half won't work.  Instead the swath width can be broken apart into left and right distances from 
nadir. This would require one additional parameter in the database table that contains the sensor 

 information.  

 
Figure 4: The cross-track swath width is constant but the longitudinal swath width, along a constant line of 
latitude, varies.  Additionally the longitudinal half swath widths, to the right and left of nadir, are different. 
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For the left edge of the swath we need to find the point (latleft, lonleft) that is distance (width/2) 
from the point of interest (latp, lonp) along the heading (180 + theta).  
latleft =  asin( (sin(latp)*cos(width/2)) + (cos(latp)*sin(width/2)*sin(180+theta)) )  

lonleft = lonp - acos( (cos(width/2) - sin(latp)*sin(latleft)) / (cos(latp)*cos(latleft)) )  
 

 For the right edge of the swath we need to find the point (latright, lonright) that is distance 
(width/2) from the point of interest (latp, lonp) along the heading (theta). 

 
 latright =  asin( (sin(latp)*cos(width/2)) + (cos(latp)*sin(width/2)*sin(theta))  

 lonright = lonp + acos( (cos(width/2) - sin(latp)*sin(latright)) / (cos(latp)*cos(latright )) )  
    

8.5 Find the planes of the swath edges:  
Convert the edge point to Cartesian (xedge, yedge, zedge).  

On a static Earth the swath edge is a small circle parallel to the Great Circle defined by nadir.  In 
Cartesian space that defines a plane parallel to the plane 

ax+by+cz=0  
That plane is:  ax + by + cz = d  where  d = (axedge + byedge + czedge)  

and the equation for the plane of the small circle which is the other edge of the swath is:  
ax + by + cz = -d  

 

8.6 Find the intersects with the given latitude:  

We want the point where each small circle intersects the latitude of the given point, and the 
sphere.  That is:  

 ax + by + cz = d   : swath edge  
 x2 +y2 + z2 = r2     : sphere  

 z = zp                    : lat = latp  
 

Three equations, three unknowns.  We're keeping the latitude constant so we only care about the 
longitude which is atan(y/x).  Substituting z = zp and rearranging we get:  

 ax + by + czp -d = 0  and  
 x2 +y2 + zp

2 - r2 = 0  
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Solving this set of equations gets fairly hairy fairly quickly. Fortunately we have computers to do 
the hard part for us.  The following is from a session with Mathematica: 

 

In[11]:= Solve[{(x2) + (y2) - (r2) + (z2) == 0,  
         (ax) + (by) + (cz) - d == 0},  

         {x, y}] 
 

Out[11]= { 
>   {x -> (d - (b2d/(a2+b2)) - cz + (b2cz/(a2+b2)) -  

>         (b * Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz - a4z2  -  
>              a2b2z2 - a2c2z2]) / (a2 + b2)) / a,  

>     y -> (bd - bcz + Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz -  
>           a4z2 - a2b2z2 - a2c2z2]) / (a2 + b2)},  

     
>    {x -> (d - (b2d/(a2+b2)) - cz + (b2cz/(a2+b2)) +  

>         (b * Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz - a4z2 -  
>              a2b2z2  - a2c2z2 ]) / (a2 + b2 )) / a,  

>     y -> (bd - bcz - Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz -  
>           a4z2  - a2b2z2  - a2c2z2]) / (a2 + b2 )}} 

 
 

Grouping the constants together makes the solution slightly less messy.  
Let 

P = czp -d   (Constants in the Plane equation)  
S = zp

2 - r2 (Constants in the Sphere equation)  

   
  

In[12]:= Solve[{(x2) + (y2) + S == 0, ax + by + P == 0},{x,y}] 
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Out[12]= { 

                  b2P       b * Sqrt[-a4S - a2b2S - a2P2 ] 
           -P + ------- - ---------------------------------- 

                 a2 + b2                 a2 + b2 
    { x -> ------------------------------------------------,  

                                  a 
  

           -bP + Sqrt[-(a4S) - a2b2S - a2P2 ] 
>     y -> ----------------------------------------},  

                           a2 + b2 
 

                  b2P       b * Sqrt[-(a4S) - a2b2S - a2P2 ] 
           -P + ------- + ----------------------------------- 

                a2 + b2                 a2 + b2 
>    {x -> ------------------------------------------------,  

                                  a 
  

            -bP - Sqrt[-(a4S) - a2b2S - a2P2 ] 
>     y -> ----------------------------------------}} 

                           a2 + b2 
 

So we solve for x and y and convert back to spherical:  
 lon = atan(y/x)  

There are at most two solutions for each edge of the swath.  Of the four possible solutions we 
need the closest two, one east, one west.  The other two are where the planes of the swath edges 
cross the latitude on the other side of the sphere.  
    

8.7 Find crossings for the extreme orbits:  
Find the distance, in longitude, from the original point to the edge points (adjusted for the 
dateline).  Let:  
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 DE = loneast - lonp  
 DW = lonp - lonwest  

 
Find the point DE west of (latp, lonp), which is (latp, lonp - DE), and the point DW east of (latp, 
lonp), which is (latp, lonp + DW)  
Note: An error is introduced into the algorithm here.  The sensor will see the points (latp, lonp - 
DE) and (latp, lonp + DW) some time prior to, or after, it passes over (latp, lonp).  To be completely 
accurate we should adjust for the rotation of the Earth during the intervening time.  But the error 
is always small, makes less difference as it gets bigger, and adjusting for it means taking the 
sensor geometry into account. So we tolerate it in an effort to keep the algorithm simple.  Still, 
we could adjust at this point using some "generic" sensor geometry to increase the accuracy 
somewhat without sacrificing the generality of the algorithm.  

Find the nodal crossing of the orbit (on a rotating sphere) that passes through (latp, lonp - DE) 
using step 1 above and call it lonnadirWest.   Any orbit with a nodal crossing at lonnadirWest includes 
the given point (latp, lonp) on its east edge.  
Find the nodal crossing of the orbit (on a rotating sphere) that passes through (latp, lonp + DW) 
using step 1 above and call it lonnadirEast.  Any orbit with a nodal crossing at lonnadirEast includes 
the given point (latp, lonp) on its west edge.  

 Any orbit with a nodal crossing in the range [lonnadirWest, lonnadirEast] must include the given point 
(latp, lonp)  

 

8.8  Merge the ranges found in steps 8.2-8.7  

Each sample point created in step 8.1 produces a crossing range and those ranges should overlap.  
Consequently they can be merged into a single crossing range that defines where the satellite 
must have crossed the equator on the previous ascending pass if the sensor were to see the area 
of interest. 

 

8.9  Query the database or other information storage system.  

The crossing range can be used to create a spatial clause that searches on crossings in a database 
query.  For our database that clause looks like this:  

 where nodal_crossing between (lonnadirWest, lonnadirEast )  
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Combined with other clauses (temporal, parameter, quality flags, etc.) a single, relatively small, 
query is all that is required to return record locators matching the users criteria.  
    

 

9 Descending Passes: 

To find the ascending crossing range for orbits during which the sensor would see the area of 
interest on the descending pass the algorithm is similar with some minor adjustments.  

                                                                    

 
Figure 5: Spherical triangles used to calculate the ascending crossing of a satellite that sees the point of 
interest on the descending pass. 

  
The angle theta can be found the same way - but the point of interest is now on the opposite side 
of the sphere as the ascending crossing so adjustments have to be made.  
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 sin(lonn - (lonp + 180)) / sin(theta) = sin(180 - latp ) / sin(inclination)  so  
 sin(lonn - lonp - 180) = sin(theta) *sin(latp ) / sin(180 - latinf)  so  

 lonn = asin(sin(theta) *sin(latp) / sin(latinf ))  + lonp + 180  
 

 Similarly we can find the length of the arc between (0, lonn ) and (latp, lonp)  
 

 sin(Larc) / sin(90) = sin(180 - latp) / sin(180 - latinf )  so  
 Larc = asin(sin(latp) / sin(latinf ))  

    

10 Correcting the Longitudinal Half Swath Widths for Earth Rotation: 

The radius of the small circle that defines the swath edge is proportional to the radius of the 
sphere by the cos of the angular distance (distance on the sphere) from the parallel great circle.  
That is: radiussc = radius * cos(distance)  
 

The distance between two points in Cartesian space is sqrt((x1 -x2)2 + (y1-y2)2 + (z1-z2)2) so the 
distance between left edge point and the west edge point is:  

 D = sqrt((xleft-xwest)2 + (yleft-ywest)2 + (zleft-zwest) 2)  
 

Those two points, and the center of the small circle, create an isosceles triangle in the plane of 
the small circle.  We can use ordinary Euclidean trigonometry to find the vertex angle of that 
triangle and hence the length of the arc on the small circle.  
 

 cos(v) = (2*radiussc
2 - D2)/ 2*radiussc

2 = 1 - (D2/2*radiussc
2 )  

 v = acos(1 - (D2/2*radiussc
2) )  

 
 The correction would be the distance the earth rotated in the time it took the satellite to go v 
degrees.  
The correction for the right/east edge can be found in a similar fashion.   
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11 Special Cases: The absolute value of the latitude of …   

11.1 …the point of interest is greater than the maximum coverage latitude.  
If the point of interest is above (or below) the maximum coverage latitude the sensor never sees 
that point so the algorithm returns with no results for that point. If every sample point in the area 
of interest is above (or below) the maximum coverage latitude it's no use even running the 
search.  

11.2 …the point of interest is greater than the total coverage latitude.  

If the point of interest is above (or below) the total coverage latitude the sensor sees that point 
during every orbit and the algorithm returns a crossing range of [0, 360].  Once that happens 
there is no need to test further sample points and really no need for a crossing range clause in the 
search as every orbit is a match.  

11.3 …the point of interest is greater than the minimum inflection latitude.  
If the point of interest is above (or below) the minimum inflection latitude it means one of the 
swath edges is not present at that latitude making it impossible to find the longitudinal half swath 
width.  Since the algorithm distinguishes between ascending and descending passes the cutoff in 
either direction is the longitude of the inflection point.  

11.4 …the point of interest is greater than the inflection latitude.  

If the point of interest is above (or below) the inflection latitude, and didn't qualify for cases 1 or 
2 above, it is never the case that the satellite passes over that point, but there is still a limited 
range of crossings for which the sensor will see the point.  The algorithm can still use the point 
itself to find the longitudinal half swath widths (with appropriate cutoffs as noted in case 3) but 
needs to substitute the inflection latitude for the latitude of the points in order to find the initial 
cross track edges points and the crossings.  

   

12 Variations: 

12.1 Forward and backward looking sensors:  
The algorithm as described assumes a downward looking sensor.  As mentioned above the 
algorithm could be adjusted to work with forward and backward looking sensors by creating a 
virtual satellite.  Technically the algorithm doesn't care where the satellite is; it cares where the 
sensor’s field of view is. If a sensor is pointed x degrees forward of the satellite location that is 
functionally equivalent to a downward looking sensor on a virtual satellite x degrees ahead.  
Because the Earth rotates during the time it takes the satellite to travel x degrees the inclination 
of the virtual satellite may be slightly different from the inclination of the real satellite so that 
adjustment to the input parameters needs to be made.  
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One unfortunate side effect is that orbits are often defined by where the satellite is so the orbital 
data from a sensor looking x degrees forward may start and end at x degrees north latitude 
instead of at the equator. One can adjust for this by recording the start/end circular latitude 
(discussed below) in the inventory and incorporating that into the search.  Or one could avoid 
storing those extra fields in the inventory for each and every orbit by adjusting the algorithm to 
use x degrees north as the reference latitude.  

12.2  Side viewing sensors:  

 It was also mentioned above that the algorithm could easily be adjusted to work for side viewing 
sensors.  As described the algorithm assumes the ground track of the satellite (nadir) is in the 
center of the swath, so the distance to the left and right edges of the sensors field of view is just 
half the swath width.  To accommodate side viewing sensors we just have to be more explicit 
about those distances.  Instead of just the swath width as input we would need the two distances 
from nadir to the swath edge.  

For example a sensor with a 1400-kilometer wide swath centered 200 kilometers left of nadir 
would have left and right distances of 900 kilometers and 500 kilometers respectively.  The same 
sensor at a more extreme angle, centered 800 kilometers left of nadir, would have left and right 
distances of 1500 kilometers and -100 kilometers respectively where the negative value of the 
right distance indicates the right edge of the swath is actually left of nadir. The sign is a matter of 
convention and one can adopt whatever convention is convenient.  

12.3  Partial Orbits:  
The algorithm as described assumes full orbits that start and end at the same reference latitude, 
but sometimes it is more practical to slice the data into partial orbits which means the start and 
end of the data become important.  While the orbit the data is part of may intersect the area being 
searched the data itself may not.  Unfortunately just the geographic location isn't sufficient; the 
direction of the satellite is also significant.  To combine the start/end latitude of the data with the 
direction of the satellite into a single number we have adopted a convention of circular latitudes.  
Starting at the equator the circular latitudes are [0, 90] ascending, [90, 270] descending, and 
[270, 360] ascending.  
Care must be taken to ensure the circular latitudes are in sync with the indexed crossing 
longitude of the data.  For example, a descending half orbit that starts at its northernmost point 
and ends at its southernmost point—for a satellite with an inclination of 98.78 degrees indexed to 
the previous ascending crossing—would have start/end circular latitudes of {98.78, 261.22}.  
The same half orbit indexed to the next ascending crossing would have start/end circular 
latitudes of {-261.22, -98.78}. And, an ascending half orbit indexed to the included ascending 
crossing would have start/end circular latitudes of {-81.22, 81.22}.  

12.4  Multiple Orbits:  
It is also sometimes convenient to include more than one orbit in a data granule and circular 
latitudes can also be used to compensate. For example, a two orbit granule—that starts/ends on 
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the equator during the ascending pass and indexed to the initial ascending crossing—would have 
start/end circular latitudes of {0, 720}.  Indexed to the included ascending crossing the start/end 
circular latitudes would be {-360, 360}.  And, indexed to the ending ascending crossing the 
start/end circular latitudes would be {-720, 0}  
Obviously the algorithm has to compensate accordingly by computing the start/end circular 
latitudes of the search area for the different possibilities and creating multiple clauses for the 
search.  To keep the algorithm general some indication of how many orbits are in each granule, 
and which crossing the granules are indexed to should be added as an input parameter.  One 
possible convention is to always index to the first included ascending crossing, or the previous 
ascending crossing if none are included (as with descending half orbits), and indicate the number 
of orbits or fraction of an orbit in each granule with a single floating point number as an input 
parameter.  

12.5  Lookup tables:  

One advantage of the algorithm is it figures out everything mathematically rather than using 
lookup tables. This makes it faster, more flexible, more accurate, and less expensive.  It's faster 
because every database query takes a certain amount of time just to initialize, which is often 
orders of magnitude larger than the amount of time it takes to compute the answer.  It's more 
flexible because changes in the orbit of a satellite can be accommodated by adjusting a few input 
parameters rather than recreating an entire lookup table. This is especially true during the pre-
launch timeframe when people are preparing the system. Efforts expended creating lookup tables 
prior to launch may be wasted if the satellite doesn't achieve the expected orbit.  

The Backtrack algorithm is also demonstrably more flexible in adding another sensor to the 
system.  Instead of requiring a new lookup table for each new sensor, which are costly to create 
and can be quite large, the algorithm requires only the addition of a few input parameters in a 
single row of an existing table.  Moreover, the accuracy of lookup table methods is directly 
related to the size of the table.  Depending on context, doubling the accuracy of a lookup table 
can mean doubling, or quadrupling, its size. This not only increases the required storage but also 
increases the time it takes to query the table.  The backtrack algorithm, on the other hand, starts 
out as accurate as the input parameters and the computations allow.  

Finally, it would appear that one has to do the math in order to create the lookup tables in the 
first place. So, actually going ahead with the creation and use of the lookup tables is extra effort.  
Often that effort is deemed necessary because the orbital mechanics and spherical trigonometry 
involved in doing the math are quite complex, prone to error during the coding process, and 
computationally expensive.  But the backtrack algorithm simplifies the orbital mechanics by 
limiting itself to circular orbits and simplifies the math involved by using a hybrid of spherical 
trigonometry, Cartesian solid geometry, Euclidean planar geometry, and simple algebra.  
Still, there are places in the algorithm where lookup tables could be used.  The longitudinal half 
swath widths, for example, are constant for a given latitude and direction.  The correction due to 
the rotation of the Earth of the longitudinal half swath widths is also constant for a given latitude 
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and direction.  If the desired accuracy is such that the lookup table would be small, a search for 
corrected widths based on latitude and direction might be faster than doing the math.  
Alternatively, the entire algorithm, or pieces of it, could be used to generate lookup tables for 
legacy systems that require them.  This has in fact been done for one sensor, which reduced the 
cost of generating the table by about 90%.  And, with a table generator written, the costs 
associated with changing that table or generating another for a different sensor are virtually 
nothing. 
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CIRES:  Cooperative Institute for Research in Environmental Sciences 
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EOSDIS:  Earth Observing System Data and Information System 

NASA:  National Aeronautics and Space Administration 
NOAA:  National Oceanographic and Atmospheric Administration 
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16 Appendix B: Worked Example: Pittsburgh 

The picture below is a relatively ordinary orbit for a polar orbiter. The ascending equatorial 
crossing is at 77.75E. The satellite has an inclination of 98.78 degrees (declination of 8.78 
degrees) and a period of 101 minutes. The swath width is 1400 km.  

 

We want to find all the orbits for which this sensor sees Pittsburgh on the ascending pass. 
Given the location of Pittsburgh (40.50, -80.22) the algorithm looks at what the swath would 
look like if the ground track of the satellite went right through Pittsburgh on the ascending 
pass. 

1) Find the orbit with nadir crossing the given point. 

sin(theta) = sin(90 - latinf) / sin(90 - latp )  
sin(theta) = sin(8.78) / sin(49.5) = 0.15264 / 0.76041 = 0.2007  
theta = 11.5779  

lonn = asin(sin(theta) * sin(latp) / sin(latinf )) + lonp 
lonn = asin(0.2007 * sin(40.5) / sin(81.22)) - 80.22  
lonn = asin(0.2007 * 0.64945 / 0.98828) - 80.22  
lonn = asin(0.13189) - 80.22  
lonn = 7.57883 - 80.22 = -72.64117  
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Then correct for rotation  

sin(Larc) / sin(90) = sin(latp) / sin(latinf ) so  
Larc = asin(sin(latp) / sin(latinf ))  
Larc = asin(sin(40.5) / sin(81.22))  
Larc = asin(0.64945 / 0.98828)  
Larc = asin(0.65715)  
Larc = 41.0830 degrees.   

Which means the true equatorial crossing can be found by adjusting for the rotation of the 
Earth during the time it takes the satellite to travel 41.0830 degrees.  

RealLonn = lonn + [ period * Larc* ROTATION_RATE / circumference]  
RealLonn = -72.64117 + [ 101 * 41.0830 * (15/60) / 360 ]  
RealLonn = -72.64117 + [ 101 * 41.0830 * (15/60) / 360 ]  
RealLonn = -72.64117 + 2.8815  
RealLonn = -69.75965 

And if that's all we wanted we'd be done.  But we need to find the crossings for all the orbits 
that cover Pittsburgh, which means we need to take the swath width into account, which 
means we need to go back to the static sphere. 

2) Convert to Cartesian 3-space and find the orbital plane. 

The two points (latp, lonp) and (latn , lonn) lie on the Great Circle that is the orbit on the static 
sphere.  Combined with the origin they define a plane.  

x = r * cos(lon) * cos(lat);  
y = r * sin(lon) * cos(lat);  
z = r * sin(lat);  

The radius is just a constant multiplier so we'll use a radius of 1.  

xp = cos(lonp) * cos(latp) = cos(-80.22) * cos(40.5) = 0.16986 * 0.76041 = 0.12916  
yp = sin(lonp) * cos(latp) = sin(-80.22) * cos(40.5) = -0.98547 * 0.76041 = -0.74936  
zp = sin(latp) = sin(40.5) = 0.64945  

xn = cos(lonn) * cos(latn) = cos(-72.64117) * cos(0.0) = 0.29836  
yn = sin(lonn) * cos(latn) = sin(-72.64117) * cos(0.0) = -0.95445  
zn = sin(latn) = sin(0.0) = 0  
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The plane of the Great Circle is defined by:  
(ypzn - ynzp)x - (xpzn - xnzp)y + (xpyn - xnyp)z = 0  

Let  

a = (ypzn - ynzp) = (-0.74936 * 0) - (-0.95445 * 0.64945) = 0.61987  
b =  -(xpzn - xnzp ) = -((0.12916 * 0) - (0.29836 * 0.64945)) = 0.19377  
c = (xpyn - xnyp) = (0.12916 * -0.95445) - (0.29836 * -0.74936) = -0.123277 + 0.22358 = 
0.10030  

And the plane of the orbit on a static Earth is: ax + by + cz = 0 

Sanity check: 

(0.61987 * 0.12916) + (0.19377 * -0.74936) + (0.10030 * 0.64945) = 
0.08006 - 0.14520 + 0.06514 = 0 

(0.61987 * 0.29836 + (0.19377 * -0.95445) + (0.10030 * 0) = 
0.18494 - 0.18494 + 0 = 0 

 

3) Find points on the swath edges: 
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We have the width in kilometers but we need to keep the units consistent.  For this example 
we'll use 111 km/degree but you may want to be more precise.  

width = 1400 / 111 = 12.6126 degrees. 

For the left edge of the swath we need to find the point (latleft , lonleft) that is distance 
(width/2) from the point of interest (latp , lonp) along the heading (180 + theta).    

latleft =  asin((sin(latp)*cos(width/2)) + (cos(lat p)*sin(width/2)*sin(180 + theta)) )  
latleft =  asin((sin(40.5)*cos(6.3063)) + (cos(40.5)*sin(6.3063)*sin(191.5779)) )  
latleft =  asin((0.64945 * 0.99395) + (0.7604 * 0.10984 * -0.2007) )  
latleft =  asin(0.6455 + (-0.01676) )  
latleft =  asin(0.62874) = 38.957  

lonleft = lonp - acos( (cos(width/2) - sin(lat p) * sin(latleft)) / (cos(latp)*cos(lat left )) )  
lonleft = -80.22 - acos( (cos(6.3063) - sin(40.5) * sin(38.957)) / (cos(40.5)*cos(38.957)) )  
lonleft = -80.22 - acos( (0.99395 - 0.64945 * 0.62874) / (0.7604*0.77762) )  
lonleft = -80.22 - acos( (0.99395- 0.40834) / (0.5913) )  
lonleft = -80.22 - acos( (0.58561481) / (0.5913) )  
lonleft = -80.22 - acos(0.990384)  
lonleft = -80.22 - 7.952  
lonleft = -88.1721  
   

For the right edge of the swath we need to find the point (latright , lonright) that is distance 
(width/2) from the point of interest (latp , lonp) along the heading (theta).  

latright =  asin( (sin(latp)*cos(width/2)) + (cos(latp)*sin(width/2)*sin(theta))  
latright =  asin( (sin(40.5)*cos(6.3063)) + (cos(40.5)*sin(6.3063)*sin(11.5779))  
latright =  asin( 0.64945 * 0.99395) + (0.7604 * 0.10984 * 0.2007)  
latright =  asin(0.6455 + 0.01676)  
latright =  asin(0.66226) = 41.472  

lonright = lonp + acos( (cos(width/2) - sin(lat p)*sin(latright)) / (cos(latp)*cos(lat right )) )  
lonright = -80.22 + acos( (cos(6.3063) - sin(40.5)*sin(41.472)) / (cos(40.5)*cos(41.472)) )  
lonright = -80.22 + acos( (0.99395 - 0.64945 * 0.66226) / (0.7604 * 0.74927) )  
lonright = -80.22 + acos( (0.99395 - 0.4301) / (0.7604 * 0.74927) )  
lonright = -80.22 + acos( 0.56384524 / 0.5697)  
lonright = -80.22 + acos( 0.98964)  
lonright = -80.22 + 8.253 = -71.967 
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4) Find the planes of the swath edges: 

Convert the edge points to Cartesian and then the planes of the swath edges are given by ax + 
by + cz = d.  

xleft = cos(lonleft) * cos(latleft) = 0.031887 * 0.77762 = 0.02479  
yleft = sin(lonleft) * cos(latleft) = -0.99949 * 0.77762 = -0.77722  
zleft = sin(latleft) = 0.62874  

xright = cos(lonright) * cos(latright ) = 0.30956 * 0.74928 = 0.23195  
yright = sin(lonright) * cos(latright ) = -0.95088 * 0.74928 = -0.71247  
zright = sin(latright) = 0.66225  
   
Perform a sanity check.  The two points we found should be the same distance from the 
orbital plane. 

axleft +byleft + czleft = d = -(ax right +byright + czright) 
(0.61987 * 0.02479) + (0.19377 * -0.77722) + (0.10030 * 0.62874) = d = -((0.61987 * 
0.23195) + (0.19377 * -0.71247) + (0.10030 * 0.66225)) 
(0.015367 - 0.15060 + 0.06306) = d = -(0.14378 - 0.138055 + 0.06642) 
-0.07217 = d = -0.07214     

There's some cumulative rounding error, but it's pretty good. 

5) Find the intersects with the given latitude: 

Now we have those planes we can find the points where the planes intersect the latitude of our 
point of interest.  That is:  
ax + by + cz = d    : swath edge  
x2 +y2 + z2 = r2     : sphere  
z = zp                    : lat = latp 

Three equations, three unknowns.  We're keeping the latitude constant so we only care about 
the longitude which is atan2(y, x).  Substituting z = zp and rearranging we get:  

ax + by + czp -d = 0  and  
x2 -y2 + zp

2 - r 2 = 0  

Let 
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planar_const = czp -d = (0.10030 * 0.64945 ) - 0.07215 = 0.0651398 - 0.07215 = -0.007010 
sphere_const = zp

2 - r2 = 0.64945 2 - 1 = 0.42179 - 1 = -0.57821 
scale = (a2 + b2) = (0.619872 + 0.19377 2) = 0.42179 

radical = SQRT((-a4 * sphere_const) - (a2 * b 2 * sphere_const) - (a2 * planar_const2)) 
radical = SQRT((-0.619874 * -0.57821) - (0.619872 * 0.193772 * -0.57821) – (0.619872 * 
0.007010 2 )) 
radical = SQRT((0.147639 * -0.57821) - (0.38424 * 0.0375468 * -0.57821) - (0.384239 * 
0.00004914)) 
radical = SQRT(0.0853666 + 0.0083418 - 0.00001888) 
radical = SQRT(0.093689) = 0.3060 

firstXterm = (b2 * planar_const)/scale = (0.193772 * -0.007010) / 0.42179 = -0.000624 
secondXterm = ((b*radical)/scale) = (0.19377 * 0.30609) / 0.42179 = 0.14062 

So 

x = (-planar_const + firstXterm - secondXterm) / a = (0.007010 + -0.000624 - 0.14062) / 
0.61987 = -0.22555 
y = (-(b*planar_const) + rad) / scale = (-(0.19377 * -0.007010) + 0.30609) / 0.42179 = 0.7289 
lon = atan2(y, x) = atan2(0.7289, -0.22555) = atan(-3.2316) + 180 = -72.806 +180 = 107.194 

OR               

x = (-planar_const + firstXterm + secondXterm) / a = (0.007010 + -0.000624 + 0.14062) / 
0.61987 = 0.237156 
y = (-(b*planar_const) - rad) / scale = (-(0.19377 * -0.007010) - 0.30609) / 0.42179 = -
0.72247 
lon = atan2(y, x) = atan2(-0.72247, 0.237156) = atan(-3.0464) = -71.827  

On the other side of the orbit let: 

planar_const = czp +d = (0.10030 * 0.64945 ) + 0.0727 = 0.06514 + 0.0727 = 0.13784 

radical = SQRT((-a4 * sphere_const) - (a2 * b 2 * sphere_const) - (a2 * planar_const2)) 
radical = SQRT((-0.619874 * -0.57821) - (0.619872 * 0.193772 * -0.57821) - (0.619872 * 
0.13784 2 )) 
radical = SQRT((0.147639 * -0.57821) - (0.38424 * 0.0375468 * -0.57821) - (0.384239 * 
0.0189998)) 
radical = SQRT(0.0853666 + 0.0083418 - 0.0073005) 
radical = SQRT(0.086408) = 0.29395 
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firstXterm = (b2 * planar_const)/scale = (0.193772 * 0.13784) / 0.42179 = 0.01227 
secondXterm = ((b*radical)/scale) = (0.19377 * 0.29395) / 0.42179 = 0.13504 

So 

x = (-planar_const + firstXterm - secondXterm) / a = (-0.13784 + 0.01227 - 0.13504) / 
0.61987 = -0.42043 
y = (-(b*planar_const) + radical) / scale = (-(0.19377 * 0.13784) + 0.29395) / 0.42179 = 
0.633587 
lon = atan2(y, x) = atan2(0.633587, -0.42043) = atan(-1.506998) + 180 = -56.43 + 180 = 
 123.567 

OR               

x = (-planar_const + firstX + secondX) / a = (-0.13784 + 0.01227 + 0.13504) / 0.61987 = 
0.015277396 
y = (-(b*planar_const) - radical) / scale = (-(0.19377 * 0.13784) - 0.29395) / 0.42179 =  -
0.76023 
lon = atan2(y, x) = atan2(-0.) = atan(-49.762) = -88.849 

The points we're looking for are the closest two.  The other two are where the edge planes 
intersect the latitude plane on the other side of the sphere.  The closest points are (40.5, -
88.85) to the West and (40.5, -71.83) to the East. The sensor sees those points on the edge of 
the swath sometime prior to, or after, it sees the point of interest and a correction for the 
rotation of the Earth could be introduced here for increased accuracy.  But the error is small 
so we skip that step here. 

6) Find crossings for the extreme orbits: 

The longitudinal distance from the point of interest (40.5, -80.22) to the swath edges is 8.63 
degrees to the west and 8.39 degrees to the east.  So if the satellite were to pass over the point 
8.63 degrees east of Pittsburgh (40.5, -71.59) the sensor would see Pittsburgh on the west 
edge of the swath.  And if the satellite were to pass over the point 8.39 degrees west of 
Pittsburgh (40.5, -88.61) the sensor would see Pittsburgh on the east edge of the swath.  We 
have only to find the equatorial crossings for those two orbits and we'll know the range of 
crossings for which the sensor is guaranteed to see Pittsburgh somewhere in the scan on the 
ascending pass. 

To find those crossings we use the same method as above: 
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sin(theta) = sin(90 - latinf) / sin(90 - latp )  
sin(theta) =  sin(8.78) / sin(49.5) = 0.15264 / 0.76041 = 0.2007  
theta = 11.5779 

lonne = asin(sin(theta) * sin(late) / sin(lat inf ))  + lone 
lonne = asin(0.2007 * sin(40.5) / sin(81.22))  - 71.59  
lonne = asin(0.2007 * 0.64945 / 0.98828)  - 71.59  
lonne = asin(0.13189)  - 71.59  
lonne = 7.57883  - 71.59 = -64.01 

RealLonne = lonne + 2.88 = -64.01 + 2.88 = -61.13 

 

lonnw = asin(sin(theta) * sin(latw) / sin(lat inf ))  + lonw 
lonnw = asin(0.2007 * sin(40.5) / sin(81.22))  - 88.61  
lonnw = asin(0.2007 * 0.64945 / 0.98828)  - 88.61 
lonnw = asin(0.13189)  - 88.61  
lonnw = 7.57883  - 88.61 = -81.03  

RealLonnw = lonnw + 2.88 = -81.03 + 2.88 = -78.14 
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And we're done. For any orbit with an ascending crossing in the range [-78.14, -61,1] the 
sensor will see Pittsburgh on the ascending pass.  

16.1 Special Cases:  

Correcting the longitudinal swath widths for earth rotation:  

The radius of the small circle that defines the swath edge is proportional to the radius of the 
sphere by the cos of the distance from the parallel great circle.  That is: radiussc = radius * 
cos(distance)  In this example the swath width is 12.6126 degrees and we're using a radius of 1. 
 So radiussc = 1 * cos(6.3063) = 0.99395. 
 
The distance between two points in Cartesian space is sqrt((x1 -x2)2 + (y1-y2)2 + (z1-z2)2) so the 
distance between left edge point and the west edge point is: 
sqrt((xleft-xwest)2 + (yleft -ywest)2 + (zleft-zwest) 2) = 
sqrt((0.02479 - 0.01528)2 + (-0.77722 + 0.76023)2 + (0.62874 - 0.64945)2) = 
sqrt((0.00951)2 + (-0.01699)2 + (-0.02071)2 ) = 
sqrt(0.00009044 + 0.00028866 + 0.0004289) =  
sqrt(0.000808) = 0.028425 
 
Those two points, and the center of the small circle, create an isosceles triangle in the plane of 
the small circle.  We can use ordinary Euclidean trigonometry to find the vertex angle of that 
triangle and hence the length of the arc on the small circle. 
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cos(v) = (2r2 - D2)/ 2r2 = 1 - (D2 /2r2) = 1 - (0.000808/1.97587) = 1 - 0.0004089 = 0.99959 
v = acos(0.99959) = 1.63862 degrees 
 
The correction would be the distance the earth rotated in the time it took the satellite to go 
1.63862 degrees 
 
101 * 1.63862 * (15/60) / 360 = 0.11493 degrees 

Which would give us a west distance of 8.74 instead of 8.63 

Similarly to the right/east the distance between the right edge point and the east edge point is: 

sqrt((xright-xeast)2 + (yright -yeast)2 + (zright-zeast) 2) = 
sqrt((0.23195 - 0.237156)2 + (-0.71247 + 0.72247)2 + (0.66225- 0.64945)2) = 
sqrt((0.005206)2 + (0.01)2 + (0.0128)2) = 
sqrt(0.0000271 + 0.0001 + 0.00016384) = 
sqrt(0.00029094) = 0.017057 

cos(v) = (2r2 - D2)/ 2r2 = 1 - (D 2/2r2) = 1 - (0.00029094/1.97587) = 1 - 0.000147246 = 
0.999853 
v = acos(0.999853) = 0.9832 degrees 

The correction would be the distance the earth rotated in the time is took the satellite to go 
0.9832 degrees 
 
101 * 0.9832 * (15/60) / 360 = 0.06896 degrees 

Which would give us an east distance of 8.32 instead of 8.39 

 

17 Appendix C: Java Implementation 
The Orbit class is part of the NSIDC Sphere’s package.  The Sphere’s package is designed to 
perform various computations on the sphere and contains an implementation of the Backtrack 
algorithm in the Orbit class. This is the implementation that both NSIDC and ECHO are 
currently using.  Only the Orbit class in attached as an example. The source code for the entire 
Spheres package is available from NSIDC. 
 

 


