
ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

1

ESE- RFC Template

1 Status of this Memo
This memo provides information to the NASA Earth Science (ESE) community. This memo
does not specify an ESE standard of any kind. Distribution of this memo is unlimited.

2 Change Explanation

This RFC does not update or change a previous RFC.

3 Copyright Notice

Copyright © NASA (2005). All Rights Reserved.

4 Abstract

This document provides information about the Backtrack Orbit Search Algorithm (BOSA),
including appropriate use and details of a typical implementation.

5 Table of Contents
1 STATUS OF THIS MEMO ... 1

2 CHANGE EXPLANATION .. 1
3 COPYRIGHT NOTICE ... 1

4 ABSTRACT... 1
5 TABLE OF CONTENTS ... 1

6 INTRODUCTION .. 2
7 DEFINITIONS:... 3

8 ALGORITHM DESCRIPTION:... 5
8.1 BREAK THE PERIMETER INTO SAMPLE POINTS. .. 6
8.2 FIND THE ORBIT WITH NADIR CROSSING THE GIVEN POINT. ... 6
8.3 CONVERT TO CARTESIAN 3-SPACE AND FIND THE ORBITAL PLANE...................................... 8
8.4 FIND POINTS ON THE SWATH EDGES: ... 9
8.5 FIND THE PLANES OF THE SWATH EDGES: .. 10
8.6 FIND THE INTERSECTS WITH THE GIVEN LATITUDE:... 10
8.7 FIND CROSSINGS FOR THE EXTREME ORBITS:... 12
8.8 MERGE THE RANGES FOUND IN STEPS 8.2-8.7 ... 13
8.9 QUERY THE DATABASE OR OTHER INFORMATION STORAGE SYSTEM. 13

9 DESCENDING PASSES:... 14

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

2

10 CORRECTING THE LONGITUDINAL HALF SWATH WIDTHS FOR EARTH
ROTATION: ... 15
11 SPECIAL CASES: THE ABSOLUTE VALUE OF THE LATITUDE OF … 16

11.1 …THE POINT OF INTEREST IS GREATER THAN THE MAXIMUM COVERAGE LATITUDE. 16
11.2 …THE POINT OF INTEREST IS GREATER THAN THE TOTAL COVERAGE LATITUDE. 16
11.3 …THE POINT OF INTEREST IS GREATER THAN THE MINIMUM INFLECTION LATITUDE. 16
11.4 …THE POINT OF INTEREST IS GREATER THAN THE INFLECTION LATITUDE. 16

12 VARIATIONS:.. 16
12.1 FORWARD AND BACKWARD LOOKING SENSORS: ... 16
12.2 SIDE VIEWING SENSORS: ... 17
12.3 PARTIAL ORBITS:.. 17
12.4 MULTIPLE ORBITS: ... 17
12.5 LOOKUP TABLES: .. 18

13 INFORMATIVE REFERENCES ... 19
14 AUTHORS' ADDRESS.. 19

15 APPENDIX A: GLOSSARY OF ACRONYMS .. 19
16 APPENDIX B: WORKED EXAMPLE: PITTSBURGH.. 20

16.1 SPECIAL CASES:.. 28
17 APPENDIX C: JAVA IMPLEMENTATION.. 29

6 Introduction
Orbit searching is by far the most accurate way to search for level 0-2 orbital swath data

covering a specified area of interest. The idea behind backtrack orbit search is that while spatial
search of swath data is difficult in general, Earth Science swath data has a number of
characteristics that make the task a lot easier. Remotely sensed data is valuable to Earth
scientists because it is frequent, regular, and global. For the purposes of doing Earth Science,
scientists have an interest in keeping the data as consistent as possible. Among other things, that
means they want the sensor to have a constant field of view. An easy way to accomplish that is to
put the satellite in a circular orbit. For this reason (and others), all Earth Science satellites are in
a circular orbit.

The Backtrack Orbit Search Algorithm exploits this fact to greatly simplify the orbit model by
just modeling an orbit as a great circle under which the Earth rotates. The simplicity of the
model allows backtrack to be more efficient than orbit propagator methods, which are designed
to work with any satellite. The simplified orbit model relies on only three parameters:
inclination, period, and swath width. The accuracy of the method depends on the stability of

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

3

those three parameters over the life of the sensor, but there is also a scientific interest in keeping
those parameters stable, so they generally stay within reason or the data aren’t useful.
As the name implies, backtrack works by tracing the orbit backwards. Backtrack starts with the
area of interest and answers the question “In order for the sensor to have seen this area, where
must the satellite have crossed the equator?” There is no time dependence, so the speed of the
algorithm is independent of the time range searched. There is no cumulative error because
backtrack backs up at most one orbit. There is no performance hit from using a lookup table
because backtrack calculates the equatorial crossing range, and the subsequent search is a simple,
fast, Boolean search on that crossing range.

This document contains detailed descriptions of the general algorithm, a number of special cases,
and a number of variations. To augment the descriptions we have also included a worked
example and the java code for a working implementation as appendices.

7 Definitions:
The heading of the satellite as it crosses the equator on the ascending pass is the inclination.

The angular distance from the pole to the satellite as it passes closest to the pole is the
declination. This is (inclination - 90).

The amount of time the satellite takes to complete one orbit is the period.
The width of the field of view of the sensor is the swath width.

The northernmost point achieved by a given orbit is the northern inflection point. This is the
point at which the orbit goes from ascending to descending. Similarly the southernmost point
achieved by a given orbit is the southern inflection point, the point where the orbit goes from
descending to ascending.

Figure 3. Backtrack uses a simplified orbit model to calculate the equatorial crossings for orbits
that pass over the area of interest on the ascending (right) and descending (center) passes. The
result (right) is a simple, time independent, query.

select distinct file_ID, start_date, data_set, ascending_crossing
from inventory where data_set like "AVHRR_LAC" and
start_date >= 19800101 and end_date <= 20000218 and
(ascending_crossing between -80.0 and -64.0) or
(ascending_crossing between 88.0 and 106.0))

106E 88
E

64W 80W

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

4

Figure 1: An example orbit illustrating the minimum and maximum latitudes covered by a swath at the
inflection point. In this case the swath covers the pole so the right edge is on the other side of the pole. We
use circular latitude for the maximum to indicate this.

The northernmost latitude achieved by an orbit, the latitude of the northern inflection point, is the
inflection latitude. This is (90 - declination).
The southernmost latitude covered by a swath, when the satellite is at the northern inflection
point, is the minimum inflection latitude. It is the latitude of the southernmost swath edge
when the satellite is at the point of inflection.

The northernmost latitude covered by a swath, when the satellite is at the northern inflection
point, is the maximum inflection latitude. It is the latitude of the northernmost swath edge
when the satellite is at the point of inflection. We make this a circular latitude since it could be
greater than 90 if the swath covers the pole. So max_inflection_lat = (inflection_lat +
(inflection_lat -min_inflection_lat)).

Figure 2: Some sensors never see an area around the pole, which is defined by the maximum coverage

latitude (left). Other sensors may see a given area around the pole on every pass, which is defined by the total
coverage latitude (right).

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

5

The latitude above which all orbits cover the area is the total coverage latitude (shown in the
left hand image above). Not all sensors have this. Sensors on satellites with a low inclination
will never cover the poles, and even some sensors on polar orbiting satellites may have too
narrow a swath width to cover the pole. But sensors with a wide enough swath, on polar orbiting
satellites may cover the pole, and some region around the pole, on every pass. That region is
defined by the total coverage latitude; total_coverage_lat = min (90, (180 - max_inflection_lat)
The latitude above which no orbits cover the area is the maximum coverage latitude (shown in
the right hand image above). Not all sensors have this. Some sensors with a wide enough swath,
on a polar orbiting satellite, may always cover the pole. But sensors with too narrow a swath, or
on satellites with a low inclination, may never see the pole and never see some region around the
pole. That region is defined by the maximum coverage latitude; max_coverage_lat = min (90,
max_inflection_lat)
Circular latitude is a convenient way to encapsulate the latitude and direction of the satellite in
a single number. Ideally the circular latitude would simply be the angular distance from the
ascending equatorial crossing, but for our purposes it is more convenient to correlate the circular
latitude to the actual latitude of the satellite along-track. This creates a (pseudo-) circular latitude
that is a discontinuous function. For example: for the swath pictured in figure 1 above the
circular latitudes along track would be [0, 82] ascending, [98, 262] descending, and [278, 360]
ascending. Our use of circular latitudes in describing partial orbits is discussed further in
section 12 below.

8 Algorithm Description:

This section attempts to describe the backtrack algorithm in sufficient detail to enable a
reasonably skilled programmer to implement it. While the Backtrack algorithm uses a simplified
orbit model it is still not simple. As the algorithm uses concepts and techniques from Spherical
Trigonometry, 3-D Cartesian Geometry, ordinary Euclidean Geometry, and basic Algebra a
strong math background is highly recommended.
Backtrack was originally developed for data from DMSP satellites. The DMSP satellites are in a
sun-synchronous polar orbit. The algorithm works equally well for satellites that are in
shallower orbits and we have attempted to generalize the description, but you may see some of
Backtrack’s heritage persisting in the description below.
The description focuses on the most basic case of finding crossings for orbits during which the
sensor would see the area of interest on the ascending pass. The differences in the algorithm
required for finding descending data are covered in section 9, and a number of special cases and
variations are covered in sections 10-12. All of the cases assume a retrograde, circular orbit. We
can think of no reason the algorithm wouldn’t also work for satellites in a prograde circular orbit,
but we have had no opportunity to work with data from such a satellite.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

6

A short statement of the problem is: Given an area of interest and the period, inclination, and
swath width of an instrument on a satellite in a retrograde circular orbit; find all ascending
equatorial crossings of the satellite for all orbits of the satellite during which the instrument
recorded data over the point of interest on the ascending pass.

8.1 Break the perimeter into sample points.
The algorithm works on points so given an area create a set of points along the perimeter that are
less than swath width/2 apart. The points need to be close enough so the resulting equator
crossing ranges will overlap and hence be mergable into one searchable crossing range. Only
perimeter points are needed because that's where the extremes of the area are. I.e. any swath that
includes an interior point of the area must also include a perimeter point. Steps 8.2-8.7 are
repeated for each sample point then the crossing ranges are merged prior to the search step.

8.2 Find the orbit with nadir crossing the given point.
Let the point of interest be (latp, lonp). We seek the ascending equator crossing point of nadir at
(0, lonn)
First consider a static (non-rotating) sphere. We can approximate the orbital path of the satellite
by connecting (0, lonn) to (latp, lonp) with a great circle. This great circle also contains the
inflection point (latinf, loninf). Using arcs along the meridian of the point of interest, the great
circle orbit, the equator, and the meridian from the north pole to the inflection point we can
create two spherical triangles. We do not know the longitude of the inflection point but we do
know the latitude because we know the inclination of the orbit. That latitude is (90-declination)
where declination = (inclination-90) so we know the length of the great circle arc along loninf that
connects the inflection point to the North Pole.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

7

Figure 3: Spherical triangles used to calculate the ascending crossing of a satellite that sees the point of
interest on the ascending pass.

Given a spherical triangle with sides alpha, beta, and gamma and opposite interior angles Alpha,
Beta, and Gamma. the Law of sines for spherical triangles is:
sin(alpha)/sin(Alpha) = sin(beta)/sin(Beta) = sin(gamma)/sin(Gamma)

Let theta be the angle between the meridian of the point of interest and the orbital great circle.
Then by the Law of sines

sin(90 - latinf) / sin(theta) = sin(90 - latp) / sin(90) so
sin(theta) = sin(90 - latinf) / sin(90 - latp)

Similarly
sin(lonn - lonp)/ sin(theta) = sin(latp) / sin(latinf) so

sin(lonn - lonp) = sin(theta) *sin(latp) / sin(latinf) so
 lonn = asin(sin(theta) *sin(latp) / sin(latinf)) + lonp

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

8

 Similarly we can find the length of the arc between (0, lonn) and (latp, lonp)
 sin(Larc) / sin(90) = sin(latp) / sin(latinf) so

 Larc = asin(sin(latp) / sin(latinf))

The true equatorial crossing can be found by adjusting for the rotation of the Earth during the
time it takes the satellite to travel the distance of Larc.

RealLonn = lonn + [period * Larc* ROTATION_RATE / circumference]
Eventually we'll want to adjust everything by that amount - but for now we still need to use the
static Earth.

8.3 Convert to Cartesian 3-space and find the orbital plane.

These two points (latp, lonp) and (latn , lonn) lie on the Great Circle that is the orbit. Combined
with the origin they define a plane.

 Convert to Cartesian

 x = r * cos(lon) * cos(lat);
 y = r * sin(lon) * cos(lat);

 z = r * sin(lat);

 The plane of the Great Circle is defined by:
 (ypzn - ynzp)x - (xpzn - xnzp)y + (xpyn - xnyp)z = 0

 Let

 a = (ypzn - ynzp)

 b = -(xpzn - xnzp)
 c = (xpyn - xnyp)

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

9

 So the plane of the orbit on a static sphere is: ax + by + cz = 0

8.4 Find points on the swath edges:

Given the swath width, find points (latedge, lonedge) on each edge of the swath by going half that
distance perpendicular to the ground track. This only works for downward looking sensors.
Forward looking and backward looking sensors can also use this method by creating a virtual
satellite that is downward looking. For side viewing sensors simply dividing the swath width in
half won't work. Instead the swath width can be broken apart into left and right distances from
nadir. This would require one additional parameter in the database table that contains the sensor

 information.

Figure 4: The cross-track swath width is constant but the longitudinal swath width, along a constant line of
latitude, varies. Additionally the longitudinal half swath widths, to the right and left of nadir, are different.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

10

For the left edge of the swath we need to find the point (latleft, lonleft) that is distance (width/2)
from the point of interest (latp, lonp) along the heading (180 + theta).
latleft = asin((sin(latp)*cos(width/2)) + (cos(latp)*sin(width/2)*sin(180+theta)))

lonleft = lonp - acos((cos(width/2) - sin(latp)*sin(latleft)) / (cos(latp)*cos(latleft)))

 For the right edge of the swath we need to find the point (latright, lonright) that is distance
(width/2) from the point of interest (latp, lonp) along the heading (theta).

 latright = asin((sin(latp)*cos(width/2)) + (cos(latp)*sin(width/2)*sin(theta))

 lonright = lonp + acos((cos(width/2) - sin(latp)*sin(latright)) / (cos(latp)*cos(latright)))

8.5 Find the planes of the swath edges:
Convert the edge point to Cartesian (xedge, yedge, zedge).

On a static Earth the swath edge is a small circle parallel to the Great Circle defined by nadir. In
Cartesian space that defines a plane parallel to the plane

ax+by+cz=0
That plane is: ax + by + cz = d where d = (axedge + byedge + czedge)

and the equation for the plane of the small circle which is the other edge of the swath is:
ax + by + cz = -d

8.6 Find the intersects with the given latitude:

We want the point where each small circle intersects the latitude of the given point, and the
sphere. That is:

 ax + by + cz = d : swath edge
 x2 +y2 + z2 = r2 : sphere

 z = zp : lat = latp

Three equations, three unknowns. We're keeping the latitude constant so we only care about the
longitude which is atan(y/x). Substituting z = zp and rearranging we get:

 ax + by + czp -d = 0 and
 x2 +y2 + zp

2 - r2 = 0

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

11

Solving this set of equations gets fairly hairy fairly quickly. Fortunately we have computers to do
the hard part for us. The following is from a session with Mathematica:

In[11]:= Solve[{(x2) + (y2) - (r2) + (z2) == 0,
 (ax) + (by) + (cz) - d == 0},

 {x, y}]

Out[11]= {
> {x -> (d - (b2d/(a2+b2)) - cz + (b2cz/(a2+b2)) -

> (b * Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz - a4z2 -
> a2b2z2 - a2c2z2]) / (a2 + b2)) / a,

> y -> (bd - bcz + Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz -
> a4z2 - a2b2z2 - a2c2z2]) / (a2 + b2)},

> {x -> (d - (b2d/(a2+b2)) - cz + (b2cz/(a2+b2)) +

> (b * Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz - a4z2 -
> a2b2z2 - a2c2z2]) / (a2 + b2)) / a,

> y -> (bd - bcz - Sqrt[-(a2d2) + a4r2 + a2b2r2 + 2a2cdz -
> a4z2 - a2b2z2 - a2c2z2]) / (a2 + b2)}}

Grouping the constants together makes the solution slightly less messy.
Let

P = czp -d (Constants in the Plane equation)
S = zp

2 - r2 (Constants in the Sphere equation)

In[12]:= Solve[{(x2) + (y2) + S == 0, ax + by + P == 0},{x,y}]

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

12

Out[12]= {

 b2P b * Sqrt[-a4S - a2b2S - a2P2]
 -P + ------- - ----------------------------------

 a2 + b2 a2 + b2
 { x -> --,

 a

 -bP + Sqrt[-(a4S) - a2b2S - a2P2]
> y -> --},

 a2 + b2

 b2P b * Sqrt[-(a4S) - a2b2S - a2P2]
 -P + ------- + -----------------------------------

 a2 + b2 a2 + b2
> {x -> --,

 a

 -bP - Sqrt[-(a4S) - a2b2S - a2P2]
> y -> --}}

 a2 + b2

So we solve for x and y and convert back to spherical:
 lon = atan(y/x)

There are at most two solutions for each edge of the swath. Of the four possible solutions we
need the closest two, one east, one west. The other two are where the planes of the swath edges
cross the latitude on the other side of the sphere.

8.7 Find crossings for the extreme orbits:
Find the distance, in longitude, from the original point to the edge points (adjusted for the
dateline). Let:

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

13

 DE = loneast - lonp
 DW = lonp - lonwest

Find the point DE west of (latp, lonp), which is (latp, lonp - DE), and the point DW east of (latp,
lonp), which is (latp, lonp + DW)
Note: An error is introduced into the algorithm here. The sensor will see the points (latp, lonp -
DE) and (latp, lonp + DW) some time prior to, or after, it passes over (latp, lonp). To be completely
accurate we should adjust for the rotation of the Earth during the intervening time. But the error
is always small, makes less difference as it gets bigger, and adjusting for it means taking the
sensor geometry into account. So we tolerate it in an effort to keep the algorithm simple. Still,
we could adjust at this point using some "generic" sensor geometry to increase the accuracy
somewhat without sacrificing the generality of the algorithm.

Find the nodal crossing of the orbit (on a rotating sphere) that passes through (latp, lonp - DE)
using step 1 above and call it lonnadirWest. Any orbit with a nodal crossing at lonnadirWest includes
the given point (latp, lonp) on its east edge.
Find the nodal crossing of the orbit (on a rotating sphere) that passes through (latp, lonp + DW)
using step 1 above and call it lonnadirEast. Any orbit with a nodal crossing at lonnadirEast includes
the given point (latp, lonp) on its west edge.

 Any orbit with a nodal crossing in the range [lonnadirWest, lonnadirEast] must include the given point
(latp, lonp)

8.8 Merge the ranges found in steps 8.2-8.7

Each sample point created in step 8.1 produces a crossing range and those ranges should overlap.
Consequently they can be merged into a single crossing range that defines where the satellite
must have crossed the equator on the previous ascending pass if the sensor were to see the area
of interest.

8.9 Query the database or other information storage system.

The crossing range can be used to create a spatial clause that searches on crossings in a database
query. For our database that clause looks like this:

 where nodal_crossing between (lonnadirWest, lonnadirEast)

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

14

Combined with other clauses (temporal, parameter, quality flags, etc.) a single, relatively small,
query is all that is required to return record locators matching the users criteria.

9 Descending Passes:

To find the ascending crossing range for orbits during which the sensor would see the area of
interest on the descending pass the algorithm is similar with some minor adjustments.

Figure 5: Spherical triangles used to calculate the ascending crossing of a satellite that sees the point of
interest on the descending pass.

The angle theta can be found the same way - but the point of interest is now on the opposite side
of the sphere as the ascending crossing so adjustments have to be made.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

15

 sin(lonn - (lonp + 180)) / sin(theta) = sin(180 - latp) / sin(inclination) so
 sin(lonn - lonp - 180) = sin(theta) *sin(latp) / sin(180 - latinf) so

 lonn = asin(sin(theta) *sin(latp) / sin(latinf)) + lonp + 180

 Similarly we can find the length of the arc between (0, lonn) and (latp, lonp)

 sin(Larc) / sin(90) = sin(180 - latp) / sin(180 - latinf) so
 Larc = asin(sin(latp) / sin(latinf))

10 Correcting the Longitudinal Half Swath Widths for Earth Rotation:

The radius of the small circle that defines the swath edge is proportional to the radius of the
sphere by the cos of the angular distance (distance on the sphere) from the parallel great circle.
That is: radiussc = radius * cos(distance)

The distance between two points in Cartesian space is sqrt((x1 -x2)2 + (y1-y2)2 + (z1-z2)2) so the
distance between left edge point and the west edge point is:

 D = sqrt((xleft-xwest)2 + (yleft-ywest)2 + (zleft-zwest) 2)

Those two points, and the center of the small circle, create an isosceles triangle in the plane of
the small circle. We can use ordinary Euclidean trigonometry to find the vertex angle of that
triangle and hence the length of the arc on the small circle.

 cos(v) = (2*radiussc
2 - D2)/ 2*radiussc

2 = 1 - (D2/2*radiussc
2)

 v = acos(1 - (D2/2*radiussc
2))

 The correction would be the distance the earth rotated in the time it took the satellite to go v
degrees.
The correction for the right/east edge can be found in a similar fashion.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

16

11 Special Cases: The absolute value of the latitude of …

11.1 …the point of interest is greater than the maximum coverage latitude.
If the point of interest is above (or below) the maximum coverage latitude the sensor never sees
that point so the algorithm returns with no results for that point. If every sample point in the area
of interest is above (or below) the maximum coverage latitude it's no use even running the
search.

11.2 …the point of interest is greater than the total coverage latitude.

If the point of interest is above (or below) the total coverage latitude the sensor sees that point
during every orbit and the algorithm returns a crossing range of [0, 360]. Once that happens
there is no need to test further sample points and really no need for a crossing range clause in the
search as every orbit is a match.

11.3 …the point of interest is greater than the minimum inflection latitude.
If the point of interest is above (or below) the minimum inflection latitude it means one of the
swath edges is not present at that latitude making it impossible to find the longitudinal half swath
width. Since the algorithm distinguishes between ascending and descending passes the cutoff in
either direction is the longitude of the inflection point.

11.4 …the point of interest is greater than the inflection latitude.

If the point of interest is above (or below) the inflection latitude, and didn't qualify for cases 1 or
2 above, it is never the case that the satellite passes over that point, but there is still a limited
range of crossings for which the sensor will see the point. The algorithm can still use the point
itself to find the longitudinal half swath widths (with appropriate cutoffs as noted in case 3) but
needs to substitute the inflection latitude for the latitude of the points in order to find the initial
cross track edges points and the crossings.

12 Variations:

12.1 Forward and backward looking sensors:
The algorithm as described assumes a downward looking sensor. As mentioned above the
algorithm could be adjusted to work with forward and backward looking sensors by creating a
virtual satellite. Technically the algorithm doesn't care where the satellite is; it cares where the
sensor’s field of view is. If a sensor is pointed x degrees forward of the satellite location that is
functionally equivalent to a downward looking sensor on a virtual satellite x degrees ahead.
Because the Earth rotates during the time it takes the satellite to travel x degrees the inclination
of the virtual satellite may be slightly different from the inclination of the real satellite so that
adjustment to the input parameters needs to be made.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

17

One unfortunate side effect is that orbits are often defined by where the satellite is so the orbital
data from a sensor looking x degrees forward may start and end at x degrees north latitude
instead of at the equator. One can adjust for this by recording the start/end circular latitude
(discussed below) in the inventory and incorporating that into the search. Or one could avoid
storing those extra fields in the inventory for each and every orbit by adjusting the algorithm to
use x degrees north as the reference latitude.

12.2 Side viewing sensors:

 It was also mentioned above that the algorithm could easily be adjusted to work for side viewing
sensors. As described the algorithm assumes the ground track of the satellite (nadir) is in the
center of the swath, so the distance to the left and right edges of the sensors field of view is just
half the swath width. To accommodate side viewing sensors we just have to be more explicit
about those distances. Instead of just the swath width as input we would need the two distances
from nadir to the swath edge.

For example a sensor with a 1400-kilometer wide swath centered 200 kilometers left of nadir
would have left and right distances of 900 kilometers and 500 kilometers respectively. The same
sensor at a more extreme angle, centered 800 kilometers left of nadir, would have left and right
distances of 1500 kilometers and -100 kilometers respectively where the negative value of the
right distance indicates the right edge of the swath is actually left of nadir. The sign is a matter of
convention and one can adopt whatever convention is convenient.

12.3 Partial Orbits:
The algorithm as described assumes full orbits that start and end at the same reference latitude,
but sometimes it is more practical to slice the data into partial orbits which means the start and
end of the data become important. While the orbit the data is part of may intersect the area being
searched the data itself may not. Unfortunately just the geographic location isn't sufficient; the
direction of the satellite is also significant. To combine the start/end latitude of the data with the
direction of the satellite into a single number we have adopted a convention of circular latitudes.
Starting at the equator the circular latitudes are [0, 90] ascending, [90, 270] descending, and
[270, 360] ascending.
Care must be taken to ensure the circular latitudes are in sync with the indexed crossing
longitude of the data. For example, a descending half orbit that starts at its northernmost point
and ends at its southernmost point—for a satellite with an inclination of 98.78 degrees indexed to
the previous ascending crossing—would have start/end circular latitudes of {98.78, 261.22}.
The same half orbit indexed to the next ascending crossing would have start/end circular
latitudes of {-261.22, -98.78}. And, an ascending half orbit indexed to the included ascending
crossing would have start/end circular latitudes of {-81.22, 81.22}.

12.4 Multiple Orbits:
It is also sometimes convenient to include more than one orbit in a data granule and circular
latitudes can also be used to compensate. For example, a two orbit granule—that starts/ends on

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

18

the equator during the ascending pass and indexed to the initial ascending crossing—would have
start/end circular latitudes of {0, 720}. Indexed to the included ascending crossing the start/end
circular latitudes would be {-360, 360}. And, indexed to the ending ascending crossing the
start/end circular latitudes would be {-720, 0}
Obviously the algorithm has to compensate accordingly by computing the start/end circular
latitudes of the search area for the different possibilities and creating multiple clauses for the
search. To keep the algorithm general some indication of how many orbits are in each granule,
and which crossing the granules are indexed to should be added as an input parameter. One
possible convention is to always index to the first included ascending crossing, or the previous
ascending crossing if none are included (as with descending half orbits), and indicate the number
of orbits or fraction of an orbit in each granule with a single floating point number as an input
parameter.

12.5 Lookup tables:

One advantage of the algorithm is it figures out everything mathematically rather than using
lookup tables. This makes it faster, more flexible, more accurate, and less expensive. It's faster
because every database query takes a certain amount of time just to initialize, which is often
orders of magnitude larger than the amount of time it takes to compute the answer. It's more
flexible because changes in the orbit of a satellite can be accommodated by adjusting a few input
parameters rather than recreating an entire lookup table. This is especially true during the pre-
launch timeframe when people are preparing the system. Efforts expended creating lookup tables
prior to launch may be wasted if the satellite doesn't achieve the expected orbit.

The Backtrack algorithm is also demonstrably more flexible in adding another sensor to the
system. Instead of requiring a new lookup table for each new sensor, which are costly to create
and can be quite large, the algorithm requires only the addition of a few input parameters in a
single row of an existing table. Moreover, the accuracy of lookup table methods is directly
related to the size of the table. Depending on context, doubling the accuracy of a lookup table
can mean doubling, or quadrupling, its size. This not only increases the required storage but also
increases the time it takes to query the table. The backtrack algorithm, on the other hand, starts
out as accurate as the input parameters and the computations allow.

Finally, it would appear that one has to do the math in order to create the lookup tables in the
first place. So, actually going ahead with the creation and use of the lookup tables is extra effort.
Often that effort is deemed necessary because the orbital mechanics and spherical trigonometry
involved in doing the math are quite complex, prone to error during the coding process, and
computationally expensive. But the backtrack algorithm simplifies the orbital mechanics by
limiting itself to circular orbits and simplifies the math involved by using a hybrid of spherical
trigonometry, Cartesian solid geometry, Euclidean planar geometry, and simple algebra.
Still, there are places in the algorithm where lookup tables could be used. The longitudinal half
swath widths, for example, are constant for a given latitude and direction. The correction due to
the rotation of the Earth of the longitudinal half swath widths is also constant for a given latitude

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

19

and direction. If the desired accuracy is such that the lookup table would be small, a search for
corrected widths based on latitude and direction might be faster than doing the math.
Alternatively, the entire algorithm, or pieces of it, could be used to generate lookup tables for
legacy systems that require them. This has in fact been done for one sensor, which reduced the
cost of generating the table by about 90%. And, with a table generator written, the costs
associated with changing that table or generating another for a different sensor are virtually
nothing.

13 Informative References

Bates, Roger R., Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics, Dover
Publications, New York, 1971.

Selby, Samuel M. CRC Standard Mathematical Tables, 24th Edition, CRC Press, 1976.
Swick, R., and K. Knowles. "The Backtrack Orbit Search Algorithm",
http://www.geospatialmethods.org/bosa, November, 2004.

14 Authors' Address
Ross Swick, National Snow and Ice Data Center, Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder, CO., 80309, USA. Tel: 303-492-
6069 fax 303-492-2468, email: swick@nsidc.org

Ken Knowles, Operational Systems Inc., 1521 Easy Rider Ln Suite 101, Boulder, CO, 80304,
USA. Tel: 303-579-9015 fax 303-444-1250, email: ken.knowles@opsysinc.com

15 Appendix A: Glossary of acronyms
Acronym Description

BOSA: Backtrack Orbit Search Algorithm
CIRES: Cooperative Institute for Research in Environmental Sciences

ECS: EOSDIS Core System
EOSDIS: Earth Observing System Data and Information System

NASA: National Aeronautics and Space Administration
NOAA: National Oceanographic and Atmospheric Administration

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

20

16 Appendix B: Worked Example: Pittsburgh

The picture below is a relatively ordinary orbit for a polar orbiter. The ascending equatorial
crossing is at 77.75E. The satellite has an inclination of 98.78 degrees (declination of 8.78
degrees) and a period of 101 minutes. The swath width is 1400 km.

We want to find all the orbits for which this sensor sees Pittsburgh on the ascending pass.
Given the location of Pittsburgh (40.50, -80.22) the algorithm looks at what the swath would
look like if the ground track of the satellite went right through Pittsburgh on the ascending
pass.

1) Find the orbit with nadir crossing the given point.

sin(theta) = sin(90 - latinf) / sin(90 - latp)
sin(theta) = sin(8.78) / sin(49.5) = 0.15264 / 0.76041 = 0.2007
theta = 11.5779

lonn = asin(sin(theta) * sin(latp) / sin(latinf)) + lonp
lonn = asin(0.2007 * sin(40.5) / sin(81.22)) - 80.22
lonn = asin(0.2007 * 0.64945 / 0.98828) - 80.22
lonn = asin(0.13189) - 80.22
lonn = 7.57883 - 80.22 = -72.64117

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

21

Then correct for rotation

sin(Larc) / sin(90) = sin(latp) / sin(latinf) so
Larc = asin(sin(latp) / sin(latinf))
Larc = asin(sin(40.5) / sin(81.22))
Larc = asin(0.64945 / 0.98828)
Larc = asin(0.65715)
Larc = 41.0830 degrees.

Which means the true equatorial crossing can be found by adjusting for the rotation of the
Earth during the time it takes the satellite to travel 41.0830 degrees.

RealLonn = lonn + [period * Larc* ROTATION_RATE / circumference]
RealLonn = -72.64117 + [101 * 41.0830 * (15/60) / 360]
RealLonn = -72.64117 + [101 * 41.0830 * (15/60) / 360]
RealLonn = -72.64117 + 2.8815
RealLonn = -69.75965

And if that's all we wanted we'd be done. But we need to find the crossings for all the orbits
that cover Pittsburgh, which means we need to take the swath width into account, which
means we need to go back to the static sphere.

2) Convert to Cartesian 3-space and find the orbital plane.

The two points (latp, lonp) and (latn , lonn) lie on the Great Circle that is the orbit on the static
sphere. Combined with the origin they define a plane.

x = r * cos(lon) * cos(lat);
y = r * sin(lon) * cos(lat);
z = r * sin(lat);

The radius is just a constant multiplier so we'll use a radius of 1.

xp = cos(lonp) * cos(latp) = cos(-80.22) * cos(40.5) = 0.16986 * 0.76041 = 0.12916
yp = sin(lonp) * cos(latp) = sin(-80.22) * cos(40.5) = -0.98547 * 0.76041 = -0.74936
zp = sin(latp) = sin(40.5) = 0.64945

xn = cos(lonn) * cos(latn) = cos(-72.64117) * cos(0.0) = 0.29836
yn = sin(lonn) * cos(latn) = sin(-72.64117) * cos(0.0) = -0.95445
zn = sin(latn) = sin(0.0) = 0

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

22

The plane of the Great Circle is defined by:
(ypzn - ynzp)x - (xpzn - xnzp)y + (xpyn - xnyp)z = 0

Let

a = (ypzn - ynzp) = (-0.74936 * 0) - (-0.95445 * 0.64945) = 0.61987
b = -(xpzn - xnzp) = -((0.12916 * 0) - (0.29836 * 0.64945)) = 0.19377
c = (xpyn - xnyp) = (0.12916 * -0.95445) - (0.29836 * -0.74936) = -0.123277 + 0.22358 =
0.10030

And the plane of the orbit on a static Earth is: ax + by + cz = 0

Sanity check:

(0.61987 * 0.12916) + (0.19377 * -0.74936) + (0.10030 * 0.64945) =
0.08006 - 0.14520 + 0.06514 = 0

(0.61987 * 0.29836 + (0.19377 * -0.95445) + (0.10030 * 0) =
0.18494 - 0.18494 + 0 = 0

3) Find points on the swath edges:

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

23

We have the width in kilometers but we need to keep the units consistent. For this example
we'll use 111 km/degree but you may want to be more precise.

width = 1400 / 111 = 12.6126 degrees.

For the left edge of the swath we need to find the point (latleft , lonleft) that is distance
(width/2) from the point of interest (latp , lonp) along the heading (180 + theta).

latleft = asin((sin(latp)*cos(width/2)) + (cos(lat p)*sin(width/2)*sin(180 + theta)))
latleft = asin((sin(40.5)*cos(6.3063)) + (cos(40.5)*sin(6.3063)*sin(191.5779)))
latleft = asin((0.64945 * 0.99395) + (0.7604 * 0.10984 * -0.2007))
latleft = asin(0.6455 + (-0.01676))
latleft = asin(0.62874) = 38.957

lonleft = lonp - acos((cos(width/2) - sin(lat p) * sin(latleft)) / (cos(latp)*cos(lat left)))
lonleft = -80.22 - acos((cos(6.3063) - sin(40.5) * sin(38.957)) / (cos(40.5)*cos(38.957)))
lonleft = -80.22 - acos((0.99395 - 0.64945 * 0.62874) / (0.7604*0.77762))
lonleft = -80.22 - acos((0.99395- 0.40834) / (0.5913))
lonleft = -80.22 - acos((0.58561481) / (0.5913))
lonleft = -80.22 - acos(0.990384)
lonleft = -80.22 - 7.952
lonleft = -88.1721

For the right edge of the swath we need to find the point (latright , lonright) that is distance
(width/2) from the point of interest (latp , lonp) along the heading (theta).

latright = asin((sin(latp)*cos(width/2)) + (cos(latp)*sin(width/2)*sin(theta))
latright = asin((sin(40.5)*cos(6.3063)) + (cos(40.5)*sin(6.3063)*sin(11.5779))
latright = asin(0.64945 * 0.99395) + (0.7604 * 0.10984 * 0.2007)
latright = asin(0.6455 + 0.01676)
latright = asin(0.66226) = 41.472

lonright = lonp + acos((cos(width/2) - sin(lat p)*sin(latright)) / (cos(latp)*cos(lat right)))
lonright = -80.22 + acos((cos(6.3063) - sin(40.5)*sin(41.472)) / (cos(40.5)*cos(41.472)))
lonright = -80.22 + acos((0.99395 - 0.64945 * 0.66226) / (0.7604 * 0.74927))
lonright = -80.22 + acos((0.99395 - 0.4301) / (0.7604 * 0.74927))
lonright = -80.22 + acos(0.56384524 / 0.5697)
lonright = -80.22 + acos(0.98964)
lonright = -80.22 + 8.253 = -71.967

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

24

4) Find the planes of the swath edges:

Convert the edge points to Cartesian and then the planes of the swath edges are given by ax +
by + cz = d.

xleft = cos(lonleft) * cos(latleft) = 0.031887 * 0.77762 = 0.02479
yleft = sin(lonleft) * cos(latleft) = -0.99949 * 0.77762 = -0.77722
zleft = sin(latleft) = 0.62874

xright = cos(lonright) * cos(latright) = 0.30956 * 0.74928 = 0.23195
yright = sin(lonright) * cos(latright) = -0.95088 * 0.74928 = -0.71247
zright = sin(latright) = 0.66225

Perform a sanity check. The two points we found should be the same distance from the
orbital plane.

axleft +byleft + czleft = d = -(ax right +byright + czright)
(0.61987 * 0.02479) + (0.19377 * -0.77722) + (0.10030 * 0.62874) = d = -((0.61987 *
0.23195) + (0.19377 * -0.71247) + (0.10030 * 0.66225))
(0.015367 - 0.15060 + 0.06306) = d = -(0.14378 - 0.138055 + 0.06642)
-0.07217 = d = -0.07214

There's some cumulative rounding error, but it's pretty good.

5) Find the intersects with the given latitude:

Now we have those planes we can find the points where the planes intersect the latitude of our
point of interest. That is:
ax + by + cz = d : swath edge
x2 +y2 + z2 = r2 : sphere
z = zp : lat = latp

Three equations, three unknowns. We're keeping the latitude constant so we only care about
the longitude which is atan2(y, x). Substituting z = zp and rearranging we get:

ax + by + czp -d = 0 and
x2 -y2 + zp

2 - r 2 = 0

Let

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

25

planar_const = czp -d = (0.10030 * 0.64945) - 0.07215 = 0.0651398 - 0.07215 = -0.007010
sphere_const = zp

2 - r2 = 0.64945 2 - 1 = 0.42179 - 1 = -0.57821
scale = (a2 + b2) = (0.619872 + 0.19377 2) = 0.42179

radical = SQRT((-a4 * sphere_const) - (a2 * b 2 * sphere_const) - (a2 * planar_const2))
radical = SQRT((-0.619874 * -0.57821) - (0.619872 * 0.193772 * -0.57821) – (0.619872 *
0.007010 2))
radical = SQRT((0.147639 * -0.57821) - (0.38424 * 0.0375468 * -0.57821) - (0.384239 *
0.00004914))
radical = SQRT(0.0853666 + 0.0083418 - 0.00001888)
radical = SQRT(0.093689) = 0.3060

firstXterm = (b2 * planar_const)/scale = (0.193772 * -0.007010) / 0.42179 = -0.000624
secondXterm = ((b*radical)/scale) = (0.19377 * 0.30609) / 0.42179 = 0.14062

So

x = (-planar_const + firstXterm - secondXterm) / a = (0.007010 + -0.000624 - 0.14062) /
0.61987 = -0.22555
y = (-(b*planar_const) + rad) / scale = (-(0.19377 * -0.007010) + 0.30609) / 0.42179 = 0.7289
lon = atan2(y, x) = atan2(0.7289, -0.22555) = atan(-3.2316) + 180 = -72.806 +180 = 107.194

OR

x = (-planar_const + firstXterm + secondXterm) / a = (0.007010 + -0.000624 + 0.14062) /
0.61987 = 0.237156
y = (-(b*planar_const) - rad) / scale = (-(0.19377 * -0.007010) - 0.30609) / 0.42179 = -
0.72247
lon = atan2(y, x) = atan2(-0.72247, 0.237156) = atan(-3.0464) = -71.827

On the other side of the orbit let:

planar_const = czp +d = (0.10030 * 0.64945) + 0.0727 = 0.06514 + 0.0727 = 0.13784

radical = SQRT((-a4 * sphere_const) - (a2 * b 2 * sphere_const) - (a2 * planar_const2))
radical = SQRT((-0.619874 * -0.57821) - (0.619872 * 0.193772 * -0.57821) - (0.619872 *
0.13784 2))
radical = SQRT((0.147639 * -0.57821) - (0.38424 * 0.0375468 * -0.57821) - (0.384239 *
0.0189998))
radical = SQRT(0.0853666 + 0.0083418 - 0.0073005)
radical = SQRT(0.086408) = 0.29395

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

26

firstXterm = (b2 * planar_const)/scale = (0.193772 * 0.13784) / 0.42179 = 0.01227
secondXterm = ((b*radical)/scale) = (0.19377 * 0.29395) / 0.42179 = 0.13504

So

x = (-planar_const + firstXterm - secondXterm) / a = (-0.13784 + 0.01227 - 0.13504) /
0.61987 = -0.42043
y = (-(b*planar_const) + radical) / scale = (-(0.19377 * 0.13784) + 0.29395) / 0.42179 =
0.633587
lon = atan2(y, x) = atan2(0.633587, -0.42043) = atan(-1.506998) + 180 = -56.43 + 180 =
 123.567

OR

x = (-planar_const + firstX + secondX) / a = (-0.13784 + 0.01227 + 0.13504) / 0.61987 =
0.015277396
y = (-(b*planar_const) - radical) / scale = (-(0.19377 * 0.13784) - 0.29395) / 0.42179 = -
0.76023
lon = atan2(y, x) = atan2(-0.) = atan(-49.762) = -88.849

The points we're looking for are the closest two. The other two are where the edge planes
intersect the latitude plane on the other side of the sphere. The closest points are (40.5, -
88.85) to the West and (40.5, -71.83) to the East. The sensor sees those points on the edge of
the swath sometime prior to, or after, it sees the point of interest and a correction for the
rotation of the Earth could be introduced here for increased accuracy. But the error is small
so we skip that step here.

6) Find crossings for the extreme orbits:

The longitudinal distance from the point of interest (40.5, -80.22) to the swath edges is 8.63
degrees to the west and 8.39 degrees to the east. So if the satellite were to pass over the point
8.63 degrees east of Pittsburgh (40.5, -71.59) the sensor would see Pittsburgh on the west
edge of the swath. And if the satellite were to pass over the point 8.39 degrees west of
Pittsburgh (40.5, -88.61) the sensor would see Pittsburgh on the east edge of the swath. We
have only to find the equatorial crossings for those two orbits and we'll know the range of
crossings for which the sensor is guaranteed to see Pittsburgh somewhere in the scan on the
ascending pass.

To find those crossings we use the same method as above:

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

27

sin(theta) = sin(90 - latinf) / sin(90 - latp)
sin(theta) = sin(8.78) / sin(49.5) = 0.15264 / 0.76041 = 0.2007
theta = 11.5779

lonne = asin(sin(theta) * sin(late) / sin(lat inf)) + lone
lonne = asin(0.2007 * sin(40.5) / sin(81.22)) - 71.59
lonne = asin(0.2007 * 0.64945 / 0.98828) - 71.59
lonne = asin(0.13189) - 71.59
lonne = 7.57883 - 71.59 = -64.01

RealLonne = lonne + 2.88 = -64.01 + 2.88 = -61.13

lonnw = asin(sin(theta) * sin(latw) / sin(lat inf)) + lonw
lonnw = asin(0.2007 * sin(40.5) / sin(81.22)) - 88.61
lonnw = asin(0.2007 * 0.64945 / 0.98828) - 88.61
lonnw = asin(0.13189) - 88.61
lonnw = 7.57883 - 88.61 = -81.03

RealLonnw = lonnw + 2.88 = -81.03 + 2.88 = -78.14

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

28

And we're done. For any orbit with an ascending crossing in the range [-78.14, -61,1] the
sensor will see Pittsburgh on the ascending pass.

16.1 Special Cases:

Correcting the longitudinal swath widths for earth rotation:

The radius of the small circle that defines the swath edge is proportional to the radius of the
sphere by the cos of the distance from the parallel great circle. That is: radiussc = radius *
cos(distance) In this example the swath width is 12.6126 degrees and we're using a radius of 1.
 So radiussc = 1 * cos(6.3063) = 0.99395.

The distance between two points in Cartesian space is sqrt((x1 -x2)2 + (y1-y2)2 + (z1-z2)2) so the
distance between left edge point and the west edge point is:
sqrt((xleft-xwest)2 + (yleft -ywest)2 + (zleft-zwest) 2) =
sqrt((0.02479 - 0.01528)2 + (-0.77722 + 0.76023)2 + (0.62874 - 0.64945)2) =
sqrt((0.00951)2 + (-0.01699)2 + (-0.02071)2) =
sqrt(0.00009044 + 0.00028866 + 0.0004289) =
sqrt(0.000808) = 0.028425

Those two points, and the center of the small circle, create an isosceles triangle in the plane of
the small circle. We can use ordinary Euclidean trigonometry to find the vertex angle of that
triangle and hence the length of the arc on the small circle.

ESE-RFC-010v1 Ross Swick
Category: Technical Note October 2008
Updates/Obsoletes: None Backtrack Tech Note

29

cos(v) = (2r2 - D2)/ 2r2 = 1 - (D2 /2r2) = 1 - (0.000808/1.97587) = 1 - 0.0004089 = 0.99959
v = acos(0.99959) = 1.63862 degrees

The correction would be the distance the earth rotated in the time it took the satellite to go
1.63862 degrees

101 * 1.63862 * (15/60) / 360 = 0.11493 degrees

Which would give us a west distance of 8.74 instead of 8.63

Similarly to the right/east the distance between the right edge point and the east edge point is:

sqrt((xright-xeast)2 + (yright -yeast)2 + (zright-zeast) 2) =
sqrt((0.23195 - 0.237156)2 + (-0.71247 + 0.72247)2 + (0.66225- 0.64945)2) =
sqrt((0.005206)2 + (0.01)2 + (0.0128)2) =
sqrt(0.0000271 + 0.0001 + 0.00016384) =
sqrt(0.00029094) = 0.017057

cos(v) = (2r2 - D2)/ 2r2 = 1 - (D 2/2r2) = 1 - (0.00029094/1.97587) = 1 - 0.000147246 =
0.999853
v = acos(0.999853) = 0.9832 degrees

The correction would be the distance the earth rotated in the time is took the satellite to go
0.9832 degrees

101 * 0.9832 * (15/60) / 360 = 0.06896 degrees

Which would give us an east distance of 8.32 instead of 8.39

17 Appendix C: Java Implementation
The Orbit class is part of the NSIDC Sphere’s package. The Sphere’s package is designed to
perform various computations on the sphere and contains an implementation of the Backtrack
algorithm in the Orbit class. This is the implementation that both NSIDC and ECHO are
currently using. Only the Orbit class in attached as an example. The source code for the entire
Spheres package is available from NSIDC.

